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We will consider here the Poisson brackets obtained by the “averaging” of
local multi-dimensional Poisson brackets

{ϕi (x) , ϕi (y)} =
∑

l1,...,ld

B ij
(l1,...,ld )(ϕ,ϕx, . . . ) δl1x1... ldxd

(x− y) (1)

on the families of m-phase quasiperiodic solutions of local Hamiltonian
systems

ϕi
t = F i (ϕ,ϕx,ϕxx, . . . ) ≡ F i (ϕ,ϕx1 , . . . ,ϕxd , . . . ) , i = 1, . . . , n

(2)
represented in the following general form

ϕi (x, t) = ϕi
[a,θ0](x, t) =

= Φi
(
k1(a) x1 + . . . + kd(a) xd + ω(a) t + θ0, a

)
(3)

with some smooth 2π-periodic in each θα functions Φi (θ, a).
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Thus, we assume that x = (x1, . . . , xd), y = (y1, . . . , yd) represent
points of the Euclidean space Rd and the expression (1) defines a
skew-symmetric Hamiltonian operator on the space of smooth functions

ϕ(x) =
(
ϕ1(x), . . . , ϕn(x)

)
satisfying the Jacobi identity.
We will call brackets (1) general local field-theoretic Poisson brackets in
Rd and assume that system (2) represents a Hamiltonian system
generated by a local Hamiltonian functional

H =

∫
PH (ϕ,ϕx,ϕxx, . . . ) ddx (4)

according to bracket (1).
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We assume that the family (3) is defined with the aid of a smooth
finite-parametric set Λ̂ of 2π-periodic in each θα functions

Φi (θ + θ0, a) = Φi
(
θ1 + θ1

0, . . . , θ
m + θm0 , a

1, . . . , aN
)

with a smooth dependence of the wave numbers
kq(a) = (k1

q(a), . . . , kmq (a)) and frequencies

ω(a) = (ω1(a), . . . , ωm(a)) on the parameters a = (a1, . . . , aN).
All the functions Φi (θ, a) should satisfy the system

ωα Φi
θα − F i

(
Φ, kβ1

1 Φθβ1 , . . . , k
βd
d Φθβd , . . .

)
= 0 (5)

The parameters θα0 represent the initial phase shifts of solutions (3) and
take by definition all possible real values on the family Λ̂. We assume also
that the values of the parameters a do not change under the initial phase
shifts. Let us denote by Λ the family (3) of the functions ϕi (x, t)
corresponding to the family Λ̂.
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The procedure of averaging of a Poisson bracket is closely connected with
the Whitham averaging method ([26, 27, 28]). For this reason we will put
here additional requirements of regularity and completeness on the family
Λ which we formulate below.
Let us say first that we will everywhere consider here the generic situation
where the values (k1, . . . , kd , ω) represent independent parameters on the
full family of m-phase solutions of system (2). Thus, we assume that the
number of real parameters (a1, . . . , aN) is equal to md + m + s ,
s ≥ 0. In particular, the parameters (a1, . . . , aN) can be locally chosen in
the form a = (k1, . . . , kd , ω, n) where (k1, . . . , kd , ω) represent the
wave numbers and the frequencies of the m-phase solutions and
n = (n1, . . . , ns) are some additional parameters (if any).
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Let us consider now linear operators L̂ij[a,θ0] = L̂ij[k1,...,kd ,ω,n,θ0] given by

the linearization of system (5) on the corresponding solutions
Φ(θ + θ0, k1, . . . , kd , ω, n) . It’s not difficult to see that the functions
Φθα(θ + θ0, k1, . . . , kd , ω, n), α = 1, . . . ,m, and
Φnl (θ + θ0, k1, . . . , kd , ω, n), l = 1, . . . , s, represent kernel vectors of
the operators L̂ij[k1,...,kd ,ω,n,θ0] on the space of 2π-periodic in each θα

functions which depend smoothly on all the parameters
(k1, . . . , kd , ω, n, θ0). Let us put now the following requirements on the
operators L̂ij[k1,...,kd ,ω,n,θ0] on the family Λ̂ :
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1) We require that the vectors Φθα(θ + θ0, k1, . . . , kd ,ω,n),
Φnl (θ + θ0, k1, . . . , kd ,ω,n) are linearly independent and represent the
maximal linearly independent set among the kernel vectors of the operator
L̂ij[k1,...,kd ,ω,n,θ0] on the space of 2π-periodic in each θα functions smoothly

depending on the parameters (k1, . . . , kd , ω, n).

2) The operators L̂ij[k1,...,kd ,ω,n,θ0] have exactly m + s linearly independent

regular left eigen-vectors κ
(q)
[k1,...,kd ,ω,n](θ + θ0), q = 1, . . . ,m + s, on the

space of 2π-periodic in each θα functions, corresponding to the zero
eigenvalue and depending smoothly on the parameters (k1, . . . , kd , ω, n).

Under all the requirements formulated above we will call the corresponding
family Λ a complete regular family of m-phase solutions of system (2).
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It is well known that the Whitham approach gives a description of the
slowly modulated m-phase solutions of nonlinear PDE’s. The Whitham
solutions represent asymptotic solutions of nonlinear systems with the
main part having the form

ϕ(0) (x, t, θ) =

= Φ

(
S(X,T )

ε
+ θ(0)(X,T ) + θ, SX 1 , . . . ,SX d , ST , n(X,T )

)
(6)

where X = ε x, T = ε t, ε→ 0, are the slow spatial and time variables
and the function

S(X,T ) =
(
S1(X,T ), . . . ,Sm(X,T )

)
represents the “modulated phase” of the solution. Thus, the main part of
the Whitham solution represents an m-phase solution of the nonlinear
system with the slow modulated parameters a(X,T ) and a rapidly
changing phase.
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We have also the natural connection

SαT = ωα(X,T ) , SαX q = kαq (X,T ) (7)

between the derivatives of the modulated phase and the parameters
ω(X,T ) and kq(X,T ).
Relations (7) give the natural constraints

kαqT = ωαX q , kαqX p = kαpX q

on the functions ω(X,T ) and kq(X,T ), which can be considered as the
first part of the Whitham system on the parameters a(X,T ).
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The second part of the Whitham system is defined usually by the
requirement of existence of a bounded next correction to the initial
approximation (6) and can be defined in different ways which are usually
equivalent to each other (see e.g. [26, 27, 28, 17, 13, 1, 14, 15, 7, 8, 16]).
In our scheme we will define the second part of the Whitham system for a
complete regular family Λ of m-phase solutions of (2) as the orthogonality
at every X and T of all the regular eigen-vectors

κ
(q)
[SX1 ,...,SXd ,ST ,n(X,T )]

(
S(X,T )

ε
+ θ(0)(X,T ) + θ

)
, q = 1, . . . ,m + s

to the first ε-discrepancy f1(θ,X,T ), obtained after the substitution of
the main approximation (6) into the system

ε ϕi
T = F i

(
ϕ, εϕX, ε

2ϕXX, . . .
)

A.Ya. Maltsev () On the averaged multi-dimensional Poisson brackets
L.D. Landau Institute for Theoretical Physics 10

/ 34



It is well known that the full Whitham system, defined in one of the
standard ways, does not put any restrictions on the variables θ0(X,T )
and represents a system of PDE’s just on the parameters a(X,T ) (see
e.g. [26, 27, 28, 17]). In particular, it is also not difficult to show that the
orthogonality conditions∫ 2π

0
. . .

∫ 2π

0
κ

(q)
[SX1 ,...,SXd ,ST ,n(X,T )] i

(
S(X,T )

ε
+ θ(0)(X,T ) + θ

)
×

× f i1 (θ,X,T )
dmθ

(2π)m
= 0 (8)

defined for any complete regular family Λ , possesses the same property.
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In general, relations (8) can be written as a system of m + s quasilinear
equations

P(q)
α (SX,ST ,n) SαTT + Q(q)p

α (SX,ST ,n) SαX pT +

+ R(q)pk
α (SX,ST ,n) SαX pX k + V

(q)
l (SX,ST ,n) nlT +

+ W
(q)p
l (SX,ST ,n) nlXP = 0 , q = 1, . . . ,m + s

with some smooth functions P
(q)
α , Q

(q)p
α , R

(q)pk
α , V

(q)
l , W

(q)p
l .
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Let us say here that for the single-phase case (m = 1) the set of the

“regular” left eigen-vectors κ
(q)
[k1,...,kd ,ω,n](θ + θ0), q = 1, . . . , s + 1,

represents usually the full set of linearly independent left eigen-vectors of
the operators L̂ij[k1,...,kd ,ω,n,θ0], corresponding to the zero eigen-value, for

all the values of (k1, . . . , kd , ω,n, θ0) on a complete regular family Λ.
However, for the multi-phase case (m > 1) the situation is usually more
complicated and “irregular” left eigen-vectors of L̂ij[k1,...,kd ,ω,n,θ0],
corresponding to the zero eigen-value, also arise for special values of
parameters (k1, . . . , kd , ω, n). As a result, the corrections to the main
approximation (6) of the Whitham solution for the multi-phase case have
usually rather different form in comparison with the case m = 1 (see e.g.
[2, 3, 4]). Let us say, however, that the regular Whitham system still plays
the central role in the description of the slow-modulated m-phase solutions
both in the cases m = 1 and m > 1.
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One of the most elegant ways of constructing the Whitham system was
suggested by Whitham and is connected with the averaging of the
Lagrangian function of the initial system. This method is applicable to any
system having a local Lagrangian structure and gives a local Lagrangian
structure for the corresponding Whitham system (see e.g. [28]). Let us
say, that the Lagrangian approach gives usually essential advantages both
in constructing and investigation of the Whitham equations.
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The class of local Lagrangian systems can be significantly expanded being
included into a larger class of systems having local field-theoretic
Hamiltonian structure. In general, the systems of this kind can be
considered as the evolution systems (2) which can be represented in the
form

ϕi
t = Ĵ ij

δH

δϕj(x)

where Ĵ ij is the Hamiltonian operator

Ĵ ij =
∑

l1,...,ld

B ij
(l1,...,ld )(ϕ,ϕx, . . . )

(
d

dx1

)l1

. . .

(
d

dxd

)ld

,

defined by the Poisson bracket (1), and H is the Hamiltonian functional
having the form (4).
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The Hamiltonian theory of the Whitham equations was started by B.A.
Dubrovin and S.P. Novikov, who introduced the concept of the
Hamiltonian structure of Hydrodynamic Type. In general, the
Dubrovin-Novikov bracket in Rd can be written in the following local form

{Uν(X),Uµ(Y)} = gνµ l (U(X)) δX l (X−Y) + bνµ l
λ (U(X)) Uλ

X l δ(X−Y)
(9)

(summation over repeated indices).
The general theory of the brackets (9) is rather nontrivial. Rather deep
results on the classification of brackets (9) were obtained in [6, 22, 23]
where the full description of brackets (9), satisfying special non-degeneracy
conditions, was presented. However, there are many interesting examples
where a nontrivial structure of a system is defined by a non-generic bracket
(9) (see e.g. [11, 12]). In general, we can say that the full theory of the
brackets (9) represents rather interesting branch of the theory of the
Poisson brackets and is still waiting for its final completion.
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A special class of the Dubrovin-Novikov brackets (9) is given by the
one-dimensional brackets of Hydrodynamic Type. The brackets (9) have in
this case the following general form

{Uν(X ) , Uµ(Y )} = gνµ(U(X )) δ′(X−Y ) + bνµλ (U(X )) Uλ
X δ(X−Y ) , ν, µ = 1, . . . ,N

(10)
and are closely connected with Differential Geometry. Thus, it can be
proved ([5, 6, 7, 8]) that the expression (10) with non-degenerate tensor
gνµ(U) defines a Poisson bracket on the space of fields U(X ) if and only
if the tensor gνµ(U) defines a flat pseudo-Riemannian metric with upper
indices on the space of U while the values Γνµγ = − gµλ b

λν
γ represent the

corresponding Christoffel symbols (gντ (U) g τµ(U) = δµν ).

The theory of the Poisson brackets of Hydrodynamic Type provides the
basement for the theory of integrability of multi-component
one-dimensional Hydrodynamic Type systems

Uν
T = V ν

µ (U) Uµ
X , ν = 1, . . . ,N (11)
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Thus, according to conjecture of S.P. Novikov, every diagonalizable system
(11) which is Hamiltonian with respect to some bracket (10) with the
Hamiltonian of Hydrodynamic Type

H =

∫ +∞

−∞
h(U) dX

can be integrated.
The conjecture of S.P. Novikov was proved by S.P. Tsarev ([24, 25]) who
suggested a method for solving of diagonal Hamiltonian systems

Uν
T = V ν(U) Uν

X , ν = 1, . . . ,N (12)
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The method of Tsarev can be applied in fact to a wider class of systems
(12) which were called by S.P. Tsarev semi-Hamiltonian. In particular, the
class of the semi-Hamiltonian systems contains the diagonal systems
Hamiltonian with respect to the weakly nonlocal Poisson brackets of
Hydrodynamic Type - the Mokhov-Ferapontov bracket ([21]) and more
general Ferapontov brackets ([9, 10]), which appeared as generalizations of
the brackets of B.A. Dubrovin and S.P. Novikov. The diagonal
semi-Hamiltonian systems represent the widest class of integrable
one-dimensional systems of Hydrodynamic Type.
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B.A. Dubrovin and S.P. Novikov suggested also a method of averaging of
local field-theoretic Hamiltonian structures for the case of one spatial
dimension.
The Dubrovin-Novikov procedure is based on the existence of N local
integrals of system (2)

I ν =

∫
Pν(ϕ,ϕx , . . . ) dx

which commute with the Hamiltonian H and with each other

{I ν , H} = 0 , {I ν , Iµ} = 0 (13)

according to the bracket (1) (d = 1). It is supposed also that the set of
parameters a on the family Λ can be chosen in the form
(a1, . . . , aN) = (U1, . . . ,UN) , where

Uν = 〈Pν〉 ≡
∫ 2π

0
. . .

∫ 2π

0
Pν (Φ, kαΦθα , . . . )

dmθ

(2π)m

represent the values of the densities Pν(ϕ,ϕx , . . . ) on Λ, averaged over
the angle (phase) variables.
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We can write for the time evolution of the densities Pν(ϕ,ϕx , . . . )
according to system (2):

Pνt (ϕ,ϕx , . . . ) ≡ Qν
x (ϕ,ϕx , . . . ) ,

where Qν(ϕ,ϕx , . . . ) are some smooth functions of ϕ and its spatial
derivatives. It is convenient to write also the Whitham system as a system
of conservation laws

〈Pν〉T = 〈Qν〉X , ν = 1, . . . ,N , (14)

using the functions Pν(ϕ,ϕx , . . . ) and Qν(ϕ,ϕx , . . . ).
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The procedure of construction of the Dubrovin-Novikov bracket for system
(14) can be described in the following way:
Let us calculate the pairwise Poisson brackets of the densities Pν(x),
Pµ(y), which can be represented in the form:

{Pν(x) , Pµ(y)} =
∑
k≥0

Aνµk (ϕ,ϕx , . . . ) δ
(k)(x − y)

which some smooth functions Aνµk (ϕ,ϕx , . . . ).
According to conditions (13) we can write the relations

Aνµ0 (ϕ,ϕx , . . . ) ≡ ∂xQ
νµ(ϕ,ϕx , . . . )

for some functions Qνµ(ϕ,ϕx , . . . ).
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Let us put now Uν = 〈Pν〉 and define the Poisson bracket

{Uν(X ) , Uµ(Y )} = 〈Aνµ1 〉(U) δ′(X − Y ) +
∂〈Qνµ〉
∂Uγ

Uγ
X δ(X − Y )

(15)
on the space of functions U(X).
System (14) can be defined now as a Hamiltonian system with respect to
the bracket (15) with the Hamiltonian functional

Hav =

∫ +∞

−∞
〈PH〉 (U(X )) dX
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Let us say that the complete justification of the Dubrovin-Novikov
procedure represents in fact a nontrivial question. Let us give here the
reference on paper [18] where some review of this question and the most
detailed consideration of the justification problem were presented. In
particular, we can state that the Dubrovin-Novikov procedure is well
justified for a complete regular family Λ having certain regular
Hamiltonian properties ([18]).

In the case of several spatial dimensions (d > 1) the procedure of bracket
averaging should be actually modified, which is connected mostly with a
special role of the variables S(X) revealed in this situation. Let us
formulate here the corresponding procedure and the conditions of its
applicability according to the scheme proposed in [19, 20].
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Let us consider a complete regular family Λ of m-phase solutions of
system (2) parametrized by the m(d + 1) + s parameters
(k1, . . . , kd , ω, n) and m initial phase shifts θ0. We will call the complete
regular family Λ a complete Hamiltonian family of m-phase solutions of
(2) if it satisfies the following requirements:
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1) The bracket (1) has at every point (k1, . . . , kd , ω, n, θ0) of Λ the
same number s ′ of “annihilators” defined by linearly independent

solutions v
(k)
[a,θ0](x) of the equation∑

l1,...,ld

B ij
(l1,...,ld )(ϕ[a,θ0], ϕ[a,θ0] x, . . . ) v

(k)

[a,θ0] j , l1x1... ldxd
(x) = 0 , (16)

such that all the functions v
(k)
[a,θ0] i (x) can be represented in the form

v
(k)
[a,θ0] i (x) = v

(k)
[a,θ0] i

(
k1x

1 + . . . + kdx
d
)

for some smooth 2π-periodic in each θα functions v
(k)
[a,θ0] i (θ).
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2) For the derivatives ϕωα , ϕnl of the functions
ϕ[a,θ0] (x) = ϕ[k1,...,kd ,ω, n,θ0] (x) we have the relations

rank

∥∥∥∥(ϕωα · v(k))

(ϕnl · v(k))

∥∥∥∥ = s ′

(α = 1, . . . ,m, l = 1, . . . , s, k = 1, . . . , s ′), where the expressions(
ϕωα · v(k)

)
≡ lim

K→∞

1

(2K )d

∫ K

−K
. . .

∫ K

−K
ϕi
ωα(x) v

(k)
i (x) ddx

(
ϕnl · v(k)

)
≡ lim

K→∞

1

(2K )d

∫ K

−K
. . .

∫ K

−K
ϕi
nl (x) v

(k)
i (x) ddx

represent the convolutions of the variation derivatives of annihilators with
the tangent vectors ϕωα , ϕnl .
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It is convenient to introduce here also the families Λk1,...,kd representing
the functions ϕ[k1,...,kd ,ω, n,θ0] with the fixed parameters (k1, . . . , kd). Let
us give here the following definition:

We say that a complete Hamiltonian family Λ is equipped with a minimal
set of commuting integrals if there exist m + s functionals I γ ,
γ = 1, . . . ,m + s, having the form

I γ =

∫
Pγ (ϕ, ϕx, ϕxx, . . . ) ddx (17)

such that:

1) The functionals I γ commute with the Hamiltonian functional (4) and
with each other according to the bracket (1):

{I γ , H} = 0 , {I γ , I ρ} = 0 , (18)
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2) The values Uγ :

Uγ = lim
K→∞

1

(2K )d

∫ K

−K
. . .

∫ K

−K
Pγ
(
ϕ[a,θ0], ϕ[a,θ0] x, . . .

)
ddx

of the functionals I γ on Λ represent independent parameters on every
family Λk1,...,kd , such that the total set of parameters on Λ can be
represented in the form (k1, . . . , kd , U

1, . . . ,Um+s , θ0);

3) The Hamiltonian flows, generated by the functionals I γ , leave invariant
the family Λ and the values of all the parameters (k1, . . . , kd , U) of the
functions ϕ[k1,...,kd ,U,θ0] (x) and generate the linear time evolution of the
phase shifts θ0 with constant frequencies ωγ = (ω1γ , . . . , ωmγ), such that

rk ||ωαγ (k1, . . . , kd , U) || = m

everywhere on Λ;
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4) At every point (k1, . . . , kd , U, θ0) of Λ the linear space, generated by
the variation derivatives δI γ/δϕi (x), contains the variation derivatives

v
(k)
[k1,...,kd ,U,θ0](x) of all the annihilators of bracket (1) introduced above. In

other words, at every point (k1, . . . , kd , U, θ0) we can write for a

complete set {v(k)
[k1,...,kd ,U,θ0](x)} of linearly independent quasiperiodic

solutions of (16) the relations:

v
(k)
[k1,...,kd ,U,θ0] i (x) =

m+s∑
γ=1

γkγ (k1, . . . , kd , U)
δI γ

δϕi (x)

∣∣∣∣
Λ

with some functions γkγ (k1, . . . , kd , U) on Λ.
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Like in the one-dimensional case, we can write the following relations for
the time evolution of the densities Pγ(ϕ, ϕx, . . . ) :

Pγt (ϕ, ϕx, . . . ) = Qγ1
x1 (ϕ, ϕx, . . . ) + . . . + Qγd

xd
(ϕ, ϕx, . . . )

Let us consider now the modulation equations for a complete Hamiltonian
family Λ equipped with a minimal set of commuting integrals
{I 1, . . . , Im+s}. It is convenient to choose now the parameters of the
slowly modulated solutions of (2) in the form

(S(X,T ), U(X,T )) =

=
(
S1(X,T ), . . . ,Sm(X,T ), U1(X,T ), . . . ,Um+s(X,T )

)
,

such that the parameters kq(X,T ) are defined by the relations
kq = SX q (X = ε x, T = ε t).
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The regular Whitham system can be written here in the following form

SαT = ωα (SX 1 , . . . ,SX d ,U) , α = 1, . . . ,m ,

Uγ
T = 〈Qγ1〉X 1 + . . . + 〈Qγd〉X d , γ = m + s ,

(19)

which is equivalent to the system defined by (7)-(8).
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The procedure of averaging of the Poisson bracket (1) represents a
modification of the Dubrovin - Novikov procedure and can be formulated
in the following way ([19, 20]):
Like in the one-dimensional case, let us calculate the pairwise Poisson
brackets of the densities Pγ(x), Pρ(y), which can be represented now in
the form

{Pγ(x),Pρ(y)} =
∑

l1,...,ld

Aγρl1...ld (ϕ,ϕx, . . . ) δ(l1)(x1−y1) . . . δ(ld )(xd−yd)

(l1, . . . , ld ≥ 0).
In the same way, we can write here the relations

Aγρ0...0(ϕ,ϕx, . . . ) ≡ ∂x1 Qγρ1(ϕ,ϕx, . . . ) + . . . + ∂xd Q
γρd(ϕ,ϕx, . . . )

for some functions (Qγρ1(ϕ,ϕx, . . . ), . . . ,Q
γρd(ϕ,ϕx, . . . )).
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We define the averaged Poisson bracket {. . . , . . . }AV on the space of
fields (S(X), U(X)) by the following equalities:{

Sα(X) , Sβ(Y)
}
AV

= 0

{Sα(X) , Uγ(Y)}AV = ωαγ (SX 1 , . . . ,SX d ,U(X)) δ(X− Y) ,

{Uγ(X) , Uρ(Y)}AV = 〈Aγρ10...0〉 (SX 1 , . . . ,SX d ,U(X)) δX 1(X− Y) +

+ . . . + 〈Aγρ0...01〉 (SX 1 , . . . ,SX d ,U(X)) δX d (X− Y) +

+ [〈Qγρ p〉 (SX 1 , . . . ,SX d ,U(X))]X p δ(X− Y)
(20)

System (19) can be written now as a Hamiltonian system with the bracket
(20) and the Hamiltonian functional

Hav =

∫
〈PH〉 (SX 1 , . . . ,SX d , U(X)) ddX
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