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Geometry of the problem

It is convenient to consider fluid motions in the center-of-mass 
frame, i.e., when the following condition is satisfied:

1,2Φ
Let us assume that both liquids are inviscid and incompressible, and 

the flow is irrotational (potential); the functions     are the velocity 
potentials.

1 1 2 2 = 0.V Vρ ρ+

We put            in the unperturbed state.= 0η



Preliminary remarks
In the work by Moore [1], for the case of one fluid,       , it was established that the 

nonlinear stage of the Kelvin-Helmholtz instability is accompanied by developing singularities 
on the surface of the tangential discontinuity or, as saying, in the presence of a vortex sheet. In 
this case the vortex sheet motion can be described in the frame of the integral Birkhoff-Rott
equation. Its analysis showed that weak singularities arise in a finite time. For them, the 
surface itself remains smooth, but its curvature becomes singular. Later on, it was established 
that these singularities become seeds for the vortex spirals centers.

In Refs. [2,3] an attempt was made to generalize the Moore’s results to the case of fluids 
with different densities (i.e.,         ). There the situation was considered where a tangential 
velocity discontinuity emerged as a result of the Rayleigh-Taylor instability development, 
namely, when the Kelvin-Helmholtz instability was secondary. In this case, a tendency to the 
formation of singularities of the Moore’s type was also demonstrated, however, in the analysis 
of the motion equations there was used a number of approximations which, in our opinion, 
require an additional investigation. The most essential assumption was the so-called “localized 
approximation”: the idea was to neglect the nonlinear cross-terms in the equations written in 
terms of analytic continuations into the upper and lower half-planes of the corresponding 
complex variable. This procedure allowed to reduce the equations to the local form, which 
does not contain nonlocal integro-differential operators. However, the neglected nonlinear 
interaction, generally speaking, is not small compared to the local one.

In the present work, we will study this point in more detail. On the basis of the Hamiltonian 
formalism, it will be shown that, for the proper choice of variables, cross-terms disappear in a 
natural way, and the formation of singularities can be described analytically.
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Hamiltonian formalism
The equations of motion can be written in the Hamiltonian form [4,5]:
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introduced by V.E. Zakharov for the surface waves [6].

where the Hamiltonian coincides with the total energy of the system,
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Weakly nonlinear equations of motion
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Consider behavior of the system in the approximation of small angles of 
inclination of the boundary,  when                   For this case it is convenient 
to represent Hamiltonian as an integral over the interface,

Expanding the integrand in the Hamiltonian in powers of the canonical 
variables up to the second- and third-order terms, we get

( )1 1 1 21
2

= .
2 2 1

xn

S x

V
H dS

ρ ψ ψ ηψ

η

⎛ ⎞+∂ Φ⎜ ⎟−
⎜ ⎟+⎝ ⎠
∫

ˆ ˆ
xk H≡ −∂

Ĥ
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Let us switch to dimensionless variables:

where       is the characteristic spatial scale andλ 1 1 2= / .c V ρ ρ

;k
is the Hilbert transform, and                                  the Atwood number. 



Equations of motion, corresponding to the Hamiltonian, have the form
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Reduced equations of motion
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The linearized equations of motion are separated into two independent 
equations:

The equation for  f describes exponential growth of perturbations, 
while the equation for  g describes their damping. Hence, at times of 
order of the inverse growth rate, function g can be considered small in 
comparison with  f , and the quadratic and cubic terms with respect to g
can be neglected in the Hamiltonian. Then
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Solution of equations of motion

Here                         is  the  projection  operator.

Lets us introduce the analytic continuations of the functions  f and g
into the upper half-plane  of  the  complex variable  x :  ˆ ˆ= , = .F Pf G Pg
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Differentiating the equation for     with respect to x leads to the 
equation of the Hopf-type:

The equations take the following form:
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The solution to this equation can be found by means of the method 
of characteristics,
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The analysis of these expressions (see, also, Refs. [7,8] and [9])
shows that, in the general case, singularities appear in the solutions. The 
following expansion is valid in the neighborhood of the singular point
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It  can be seen that  the derivatives             or,  which  is  the  same 
thing,  the derivatives            become singular.  In particular, we have
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For small angles of the surface inclination, the value of G will be of the 
order of O(F 2) and, therefore, its role will be insignificant for weakly non-
linear evolution of this system (recall that                ). However, this 
statement requires to be verified in the vicinity of the point  where the 
second derivative of the function  F becomes singular.
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One can see that if this equation does not contain the projection 
operator, the second term in the right-hand side would be singular due to 
the second derivative   ; however the action of   suppresses the
appearance of a singularity at  Im x > 0.  Then in the neighborhood of the 
touching point, the function  G has to follow the asymptotics of the function 
F,  i.e., G should be sought in the form
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the real part of        is small compared to the real part of   , i.e., the surface 
shape  near  the  singularity  is  determined by the function  F in  the  small-
angle approximation:
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Dynamics of the interface 
2Re = 2Re .xx xx xF Vη ≈The curvature  in  the leading  order  behaves  as

We get in the neighborhood of the singular point:
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This expression describes the formation of weak root singularities on 
the interface in a finite time for which the curvature becomes infinite, while 
the slope angles remain small.

So, in  the  limit              (i.e.,                  ), we  get  for  the  symmetric 
perturbation of the interface:
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In the general case, at the moment of singularity formation, the 
interfacial curvature in the vicinity of the singular point is defined by

( )1/2
1 2( , ) | | sgn( ) ,xx c c cx t x x c c x xη −≈ − + −

where the constants        are defined by the initial perturbation shape of the 
interface and also by Atwood number  A. If               then the curvature 
changes its sign at the singular point. Otherwise, it has a definite sign. 
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It is important that the slope angles remain small at the moment of 
singularity formation. Let             be the characteristic initial angle. Then, at  
the moment    ,  we  have                 for  periodic perturbations of the 
interface,  and                 for localized perturbations.
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For fluids with comparable densities (Atwood number is small in 
absolute  value,           ),  the  curvature  always  changes  its  sign  at the 
singular point. The classic situation when the fluids are identical  (       )  
corresponds to this case. 

If the density of one fluid considerably exceeds the density of another 
fluid  (i.e.,  for  Atwood  number  close  to  unity,        )  the  interfacial 
curvature  has a definite sign near the singularity:  it  is  negative  for
and positive for         .



The dynamics of singularity formation on the interface between two 
ideal fluids is studied for the Kelvin-Helmholtz instability development 
within the Hamiltonian formalism. It is shown [10] that the equations of 
motion derived in the small interface angle approximation (gravity and 
capillary forces are neglected) admit exact solutions in the implicit form. 
The analysis of these solutions shows that, in the general case, weak 
root singularities are formed on the interface in a finite time. For them 
the curvature becomes infinite, while the slope angles remain small. For 
Atwood numbers close to unity in absolute values, the surface curvature 
has a definite sign correlated with the boundary deformation directed 
towards the light fluid. For the fluids with comparable densities, the 
curvature changes its sign in a singular point. In the particular case of 
the fluids with equal densities, the obtained results are consistent with 
those obtained by Moore based on the Birkhoff-Rott equation analysis.

Conclusion
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