Nonlinear harmonic surface waves on a deep water. Experimental results in "Marintek" ocean basin (Trondheim, Norway)

V. Efimov,

Institute of Solid State Physics RAS, Chernogolovka, Russia Physics Department, Lancaster University, Lancaster, UK SCT-VII, Zakharov-75, 07 August 2014

Acoustic turbulence

Nonlinear waves (acoustic turbulence)

$$\frac{\partial \overline{v}}{\partial t} + (\overline{v}\nabla)\overline{v} = \frac{1}{\operatorname{Re}_a}\Delta\overline{v}$$

where dimensionless acoustic Reynolds's coefficient is

ratio of nonlinear and viscous effects.

Second sound waves in SF helium – Burgers turbulence

$$\frac{\partial}{\partial t}\delta T + u_{20}(1 + \alpha\delta T)\frac{\partial}{\partial x}\delta T = \nu \frac{\partial^2}{\partial x^2}\delta T$$

Laboratory of Quantum Crystals

 $\omega \sim k$

Experimental studies of one dimensional nonlinear second sound waves in the cylindrical cell

1000

Frequency (Hz)

100

Energy transfer in k-space over scales

Mixing of resonance frequencies

- We applied two harmonic frequencies corresponding two different resonances:
 R32 (5V) and R 11 (2V) (R11 signal didn't format cascade)
- We observed mixing respond of system: R11
 R32-R11
 R32-R11
 R32+R11
 2*R32-R11
 2*R32+R11
- The initial cascade suppressed by small second frequency.

```
Laboratory of Quantum 
Crystals
```

Mixing of frequencies and suppression of cascade.

We applied $f_D=3168$ Hz (32 Resonance), and got the cascade A(ω)~ $\omega^{-1.62}$ (green line)

then we add second frequency $f_D = 1084$ Hz (11 Resonance) and observed combinational frequencies and cascade suppression A(ω)~ ω ^{-2.15} (red line)

Kinetic turbulence

The Navier-Stokes equations are a set of equations that describe the motion of fluid substances with dissipation

$$\rho \left[\frac{\partial \overline{v}}{\partial t} + (\overline{v}\nabla)\overline{v} \right] = -\nabla P + \eta \Delta \overline{v} + (\xi + \frac{\eta}{3}) \text{ grad div}\overline{v}$$

For incompressible fluid the equations change to

$$\frac{\partial \overline{v}}{\partial t} + (\overline{v}\nabla)\overline{v} = -\frac{1}{\rho}\nabla P + \upsilon\Delta\overline{v}$$

$$div \ \overline{v} = 0$$

- where $u=\eta/\rho$ coefficient of kinematical viscosity
- Transformation the equations into dimensionless form we got $\frac{\partial \overline{v}}{\partial t} + (\overline{v}\nabla)\overline{v} = -\nabla P + \frac{1}{D}\Delta\overline{v}$ Reynolds equations,

where \underline{VL} is Reynolds number –

measure of ratio of inertial/viscous forces

U

Wave interaction in dispersion medium

Dispersion ratios for gravitational surface waves

We launch flat harmonic wave with single frequency $\boldsymbol{\omega}$

Quasi-one dimensional situation

For deep water

k.

 $\mathbf{k} = \mathbf{k}_1 + \mathbf{k}_2$ $\omega = \omega_1 + \omega_2$

 $\mathbf{k}+\mathbf{k}_1=\mathbf{k}_2+\mathbf{k}_3$ $\omega+\omega_1=\omega_2+\omega_3$

 $W^2 = \mathbf{gk}[1 + (\mathbf{kA})^2]$

SCT-VII, Zakharov-75, 07 August 2014

 $\frac{g}{2n} = \frac{g}{2n}t$

 $W = \sqrt{gk}$

$$W^2 = gk[1 + (kA)^2]$$

There are some special points: 80-

Change of concavity

The conservation law of energy and pulses are allowed 1-D three waves interaction

 $d^2\omega/dk^2=0$

 $A^*k > 0.2$ $A/\lambda > 0.03$

 $\omega = \omega_1 + \omega_1, \Rightarrow \omega = 2 * \omega_1 \text{ and } k = k_1 + k_1 \Rightarrow k = 2 * k_1$ $A^*k > 1/2$

З

Marintek Ocean Basin

Sensors, results and so on.

Experiments May-June Concorra and sensor 2012 Triangular set of sensors Single Common sensor view of basin

MULTIFLAP WAVEMAKER (BM3)

SCT-VII, Zakharov-75, 07 August 2014

Distance from paddles (and from axe of basin)

• wave_01_1 (- 0.2 m), wave_01_2 (+ 0.2 m) L=4.7 m from paddles

• wave_01_4 (-10 m), wave_01_5 (-5 m), wave_01_6 (+5 m), wave_01_7 (+10 m)

L-4.0 III
L=5.0 m
L=9.8 m
L=14.8 m
L=19.8 m
L=24.7 m
L=25 m
L=29.8 m
L=34.3 m
L=34.6 m
L=34.8 m
L=35.2 m
L=39.8 m
L=44.8 m

Filling of basin – bottom is sinking

Physical parameters of the sensors

- The sensor records phase motion of the waves.
- Deep water ($\lambda < D$) in our case $\lambda < 3$ m, $k = 2\pi/\lambda > 2$ m⁻¹
- Phase velocity for deep water is

 $V_{Ph} = \frac{g}{W} = \frac{gT}{2\rho} = \sqrt{\frac{g}{k}}$ • Wavelength must be $\lambda > 0.05$ m $L \sim 2.5$ cm, so $\lambda > 2^*L$ and k < 120 m⁻¹

• Spectrum in our case is

$$f = \frac{W}{2\rho} = \frac{\sqrt{gk}}{2\rho}$$

 $t = L/v_{Ph} = L^* 2\pi / (g_{Zakha}^*T_{0}) s_{75, 07 \text{ August 2014}}$

and real frequency is **0.7Hz<f<5.5 Hz**

 $max f_{S} of sensors = 200 Hz$ $f_{S} >> real f$

The set of regular wave experiments (quasi-one dimensional waves, angle =90 °)

• Frequency dependence.

A=0.068m, τ=1 s, τ=1.05 s, τ=1.1 s

- Frequency and amplitude dependences. A=0.2m, τ=1 s, τ=1.67 s; A=0.15 m, τ=2.22 s; A=0.12m, τ=2.5 s
- Amplitude dependence. A=0.068m, τ =1 s; A=0.2 m, τ =1. s
- Sum of two harmonic waves
 - A=0.2 m, τ=1.67 s + A=0.12 m, τ=2.5 s

• Sum of three harmonic waves.

A=0.2m,
$$\tau$$
=1.67 s + A=0.15 m, τ =2.22 s
+ A=0.12m, τ =2.5 s

Nonlinear waves

L.W.Schwartz, Strong nonlinear waves, Ann. Rev. Fluid Mech., 14, 39-60, 1982

Set of our measurements was next:

Test	H, m	t, ?	l, m	Η/λ
6190	0.2	1	1.56	0.128
6200	0.2	1.67	4.35	0.046
6500	0.068	1	1.56	0.044
6210	0.15	2.22	7.69	0.0195
6220	0.12	2.5	9.75	0.0123

Transformation of the harmonic wave shape with distance

Change of harmonic wave with time

- The wave formation (first row of sensors)
- Initial we had harmonic wave
- Latter appear a set of multiple harmonics
- What is the reason of this transformation?

Test 6210 A=0.15 m, τ=2.22 s

Α/λ=0.0195

Test 6220 A=0.12 m, τ=2.5 s

A/λ=0.0123

Two collinear waves interaction

Why harmonic wave format a wide spectrum of frequencies?

Nonlinear effects – different wave frequency and its velocity, which interact.

Ripple propagation in the MARINTEK basin Trondheim, Norway

23 may 2012 *f*=1 Hz, A=0.068 cm L=25 m, regular wave

t=8:15:23

t=8:15:44

t=8:16:09

t=8:16:29

t=8:16:54

t=8:17:10

Experimental team Lancaster University, Lancaster, UK Marintek Ocean Wave Basin, Trondheim, Norway

- Peter McClintock
- Suzy Ilic
- James Luxmoor
- Carl Stansberg
- Ivar Nygaard
- Csaba Pâkozdi

1arov-75, 07 August 201

Thank you for your attention!

Figure 1 Dimensionless wave s height for deep-water progressiv STRONGLY NONL **WAVES** \mathbf{O}

8

.18

.05

L. W. Schwartz Exxon Research and Engineering Company,

Ann. Rev. Fluid Mech.

c-1

Ι

Ripple propagation in the MARINTEK basin Trondheim, Norway

23 may 2012 *f*=1 Hz, A=0.068 cm L=25 m, regular wave

t=8:15:23

t=8:15:44

t=8:16:09

t=8:16:29

t=8:16:54

t=8:17:10

SCT-VII, Zakharov-75, 07 August 2014

Nonlinear waves

L.W.Schwartz, Strong nonlinear waves, Ann. Rev. Fluid Mech., 14, 39-60, 1982

Set of our measurements was next:

Test	H, m	t, ?	l, m	Η/λ
6190	0.2	1	1.56	0.128
6200	0.2	1.67	4.35	0.046
6500	0.068	1	1.56	0.044
6210	0.15	2.22	7.69	0.0195
6220	0.12	2.5	9.75	0.0123
		· · · · · · · · · · · · · · · · · · ·		

Test 6500 A=0.068 m, τ=1 s

Α/λ=0.045

Complex singularity of a Stokes wave. S.A. Dyachenko, P.M. Lushnikov, A.O. Korotkevich 20th of June, 2014, Scientific Council at Landau ITP

 $c = v(H)/v_{o}$