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Motivation and outline |

» Generation of large scale flows —zonal flows - by the
rectification of small scale turbulent fluctuations in quasi-
2D turbulent flows

» Great importance both in geophysical flows and in
magnetically confined plasmas.

» The flows regulate the turbulence by suppressing the
small scale structures and set up effective transport
barriers.

» The morphology of zonal flows, the basic mechanisms
for their generation and their influence on turbulence and
the associated transport in magnetized plasmas and
rotating fluids.
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Motivation and outline 11 il
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» Zonal flow generation in a fluid experiment in a rotating
tank with radial symmetric bottom topography, by exploiting
the Lagrangian invariance of the potential vorticity, PV.

»This mechanism is widely applied in quasi-2D geostropic
turbulent flows for explaining zonal flow bands on planets.

» In magnetically confined plasmas sheared poloidal zonal
flows reduce the radial turbulent transport and are
Instrumental in the transition to an enhanced confinement
state (the H-mode), with suppressed turbulent transport.

-- Turbulent transport is the dominating transport channel in
magnetically confined plasma.

» The H-mode is envisaged for the ITER experiment for
fulfilling the goal of demonstrating beak-even.

» And it is the H-mode that future fusion reactors will rely
on.
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Zonal flows - Jupiter
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Zonal flow on
major planets

Typical width
related to stability

Great red spot —
not for this talk
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Zonal flow in magnetically confined plasma
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plasma poloidal

7 . magnetic field

Zonal flow : v, = E X B
(poloidal)

E, — radial electric field
zonal flow

Turbulent velocity v =E x B

e - v =(u,V) in poloidal plane
plasma current  toroidal magnetic field

Terminologi :

Zonal Flows : small scale flows driven by rectified turbulent
fluctuations - local transport barrier Diamond et al. PPCF 47, R35 (2005)

Mean Flows — global poloidal flows : large scale flows in the
plasma edge — driven by radial force balance and neoclassical
effects — ETB: edge transport barrier
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Turbulence-Flow-Flux
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Typical behaviour.

['y flux; U, K energy in the flow, fluctuations
Garcia and Bian PRE 68, 047301 (2003)
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Zonal flow generation by Reynolds stress
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2 (b} + K+ T) = p V.

Reynolds decomposition

{ Ly w=48, ¢=2+ 4 v=VI+¥
2 ={w = T wdy, (=0
0
Zonal velocity V — (o) - (a) — : Re-stress flux of
onal velocity V' = (v) ({w) = /zonal momentum
oV o &« 07
5 = —E,m-} + ;_c.ﬁlr (K(n+T))=0)

Quasilinear approximation: Contribution from the k'te wave-component:
dm<U?} — _Eﬁ'dmﬂwkﬁﬂrﬂk}

f;. is the phase of 1.

Flow generation for d.f; # 0 Radial propagation
Diamond and Kim, Phys. Fluids B 3, 1626 (1991)

Flow generation takes energy from the turbulence and limits
the turbulent transport — the flow do not contribute to transport
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Zonal flow generation and potential vorticity

Homogenization of potential vorticity (PV) in quasi 2-D flows (geophysical
flows)

i

P. Rhines The Sea (1977); Ann. Rev. Fluid Mech. 11, 401 (1979)
Dritschel and Mclntyre, J. Atmos. Sci. 65, 855 (2008) — PV staircase

DI D [w+f | Ertel, 1942 — ((_B.K. Vallis_, Atmospheric
= : = 0 and oceanic fluid dynamics. 2006)
Dt Dt \ H(r)

barotropic flows -VP xV p =0

D/Dt = 9/0t + v - Vv, w is the relative vorticity of a fluid element, f is
background vorticity, H(r) is the depth of the fluid layer.

Movement towards deeper regions stretch the vortices and enhance w: )
towards shallower regions compress the vortices and decrease w.
Mixing of II — low relative vorticity over shallow regions and higher

\Jelative vorticity over deeper regions. J
Plasma case: lon vorticity equation (cold ions):

DI, D (wtwa) _ “barotropic flows” -
2 .
Dt Dt ( ) |

n(r) vPxyn=0
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Experiment — PV homogenization
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Experimental setup, rotating tank with a rigid lid. R = 19.4 cm, D = 20 cm,
1 = 5 cm, rotation rate 12 rpm.

IT = w + Br (expansion H(r) =1 — 3r)

Mixing: periodically pumping water in and out of two holes (diameter
2em). Forcing period: Tk (Tr = 6.6 s) Diagnhostics: particle tracking:

instantaneous velocity field
Rasmussen et al Physica Scripta T122, 44 (2006)
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Azimuthal velocity
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The azimuthal velocity component averaged over 20 forcing periods. Blue

designates negative velocity, i.e. anti-cyclonic motion and red designates
positive velocity
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Azimuthal velocity profile
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Cone. Averaged over 20 periodes. T = 6.65
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Potential vorticity profile
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Azimuthally averaged potential vorticity and fluid vorticity

Maximum velocity set by total homogenization of PV
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Numerical modelling
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The forced quasi-geostrophic vorticity equation on a disk with no-slip
boundary conditions at the walls.

Ow 1 3 Ao 1,
—+ —|pw] — — = —wvw+=—Vw+F ,
ot r T )

Length is scaled as R, time as f~!, and g by f/R. v = vE, Ekman
number E = u/D*Q with a spin down time 7 = 90 s.
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For the experimental condition the scaled values of 5 = 0.256 and
E = 4.55 x 10~*. While Re ~ 80.000 and volume viscosity is negligible.
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Vorticity - simulations
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Vorticity for different
values of B.

Forced turbulence by array
of vortices with oscillating
vorticity:

Number of zonal bands
increas with B — width
realated to the Rhines
scale

Lg= (2<u=>/B)**
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Jupiter zonal flow bands
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Modeled by PV
homogenization —
almost — GRS anomaly

PV-staircase —
piecewise constant PV

Marcus and Shetty Phil.
Trans. R. Soc. A 369, 771
(2011)
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Flow generation in
magnetically confined
plasmas —

L-H transition
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Zonal flow in magnetically confined plasma

plasma poloidal
yy . magnetic field
Zonal flow : v, = E X B
(poloidal)
E, — radial electric field
zonal flow

. Turbulent velocity v = E X B
N ——— > - v =(u,V) in poloidal plane
plasma current  toroidal magnetic field

Terminologi :

Zonal Flows : small scale flows driven by rectified turbulent
fluctuations - local transport barrier

Mean Flows — global poloidal flows : large scale flows in the

plasma edge — driven by radial force balance and neoclassical
effects — ETB: edge transport barrier
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Turbulence-Flow-Flux
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Simulation of
convection model,
plasma in an
Inhomogeneous
magnetic field.

The turbulent intensity
and the radial particle
flux across the
magnetic field is
strongly modulated by
the zonal flow
generation.

Typical behaviour.

['y flux; U, K energy in the flow, fluctuations
Garcia and Bian PRE 68, 047301 (2003)

18

DTU Physics

SCT VII - 2014 - Turbulence and Flows 2014-08-08



-]
—
—

Model :: Turbulence — flow interacting

i

« Closing the loop of shearing and Reynolds work |colisional Nonlinear

flow Llalmpmv‘wl RESS _gflow damping

( & Self-Regulating System)

« Spectral ‘Predator-Prey’ equations Zulml flows

SUPPRESS + +I.’l|-tl"h'|-:

.
Inhomoge- Drift wave
neity turbulence

DRIVE

Prey — Drift waves, _
Diamond et al 2011

#N =yN—aV*N — AwN-,
Predator — Zonal flow, ‘
VI =aNV?:—y Vi —a, V™

V= Flow velocity N - turbulence energy Various solutions incl
dat .. : '
preqator prey limit cycle solutions
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High confinement mode in Tokamak
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discovered on ASDEX Inh 1982

Wagner, ASDEX, PRL 1982, 1989

S 3 ..
_ % 18019 L H Transition — abrupt
e 41 (@) , in response to a
= 34 e 4 | slowly changing
'j; 24 - - 1 = | parameter- energy
= P I input:
=2 17 - ¢
- 3 AcsA 77
0 : —ﬂ:q:a:::::q:ﬂg!zmqmﬁqmmmﬂ_ 0 “Phase transition
1.0 1.1 1.2 1.3 1.4
t (s)
[T —
| — \
Tem_perqture (pressure) » | ~_b
profiles in L- and H-mode. z \
i ] @ ETB
H-mode essential for a viable € H \
operation of a fusion reactor =
—and ITER T T——

Transport barrier (ETB) is set
up near the edge — mediated
by sheared poloidal flows
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L-H transition modeling:
predator — prey models

Two predators:

d .
%I =TI (G — a1 — asFEys — asFEye), Turbulent intensity | S 8N
d b1 / N ;
EEzf = 2FEz (1 B bS) »  Zonal flow shear )
d

—G = Q(t) — G (c1] + ¢3) Pressure gradient: E.; = c,G*

dt (E+ mean flow shear)

3 coupled ODE — Kim & Diamond PRL 2003 --- O space dimension

Detailed analysis of the dynamical properties — finding conditions for L-H
transition from the bifurcation properties.

M. Dam et al Phys. Plasma 20, 102302 (2013);

Reproduce quantitatively experimental observations — but no
predictions!

Apply the results as guide-line for modelling based on first principle models.
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L -H Transition scenarios

Ry
Typical transition scenaries observed in Tokamaks
Control-parameter ion energy input — Q(t)
1 - ' — 0.5 0.5 —
—w/t _— 3;;;’4
0.8¢ 1 04 0.4}
L D
0.61 H 1 0.3 0.3F
0.4} 1 0.2/ 0.2}
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0.2¢ 1 0.1F
} \/‘M\M\ 01y
U'J/JI\X;V o= /
0.5 ! 15 2 0 0.5 ! 15 2 0y 05 ] 15 >
Q(t) Q(t) g Q(t)

Dithering transition
Slow heating™

Sharp transition with
hysteresis — no ZF**

Smooth transition — no ZF

u— turb instensity, v — zonal flow shear, w-density gradient — propto mean flow

*Bifurcation analysis shows a stable fix point in the D-phase transforms into
and unstable fixpoint - Hopf bifurcation |:> enter into H-mode — stable

equilibrium

**No stable fixpoint in D-phase and direct transition from L-equilibrium to H-

equilibrium.
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Slow transition dynamics
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The dynamics is essential ”2D”: u and v — w ”slaving variable” —

a reduced 2 ODE model reproduce the 3 ODE results — for the
slow transition.

SR : 4
' 3 _\\:-c‘ e -, _—
IR SRR \ — — — —
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Critical manifold
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L-H transition with dithering

Gas puff imaging, GPI - Deuterium

I-phase

EAST Shot 41362
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EAST Tokamak, Hefei CN

Pressure evolution
Pressure fluctuations

Pressure difference —
”gradient”

"Particle transport”

Poloidal velocity

Reynolds stress

G.S. Xu et al. Nuclear Fusion 54,
013007 (2014).
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EAST Tokamak, Hefei CN 4-field fluid model - HESEL

Nielsen et al US — EU --TTF Workshop September 2014
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Summary

HE

» Zonal flows are generated by rectifying small scale turbulent
fluctuations

» Zonal flows, sheared flows — transport barrier wrt. turbulent
transport

» Flow generation by homogenization of potential vorticity PV in
rotating fluids

» Role of in magnetized plasma - flow generation and transport
barrier.

» Flows are essential ingredients in the L-H transition in
magnetically confined plasma

» Modelling —Predator-Prey type models — towards first principle
models
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