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1. Introduction

Consider integrable Hamiltonians
H=A+U(xi,....,xy)

related to simple Lie algebras. For such Hamiltonians the
potential U is a rational, trigonometric or elliptic function. For
instance, the elliptic Calogero-Moser Hamiltonian is given by

H:A—G—gZp(xi — xj).
>]

Observation 1 (A.Turbiner). Many of these Hamiltonians
admit a change of variables that bring it to a differential ope-
rator with polynomial coeflicients.



Example. Consider the Calogero model with n = 3:
> 1
H=A+g —.
; (i — x5)°
Let Y = Zf’zl x; and y; = x; — % Then
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Thus we have reduced the Hamiltonian to the following two
dimensional one:

1,02 82 02 > 1
H:—* — t = — +V7/—]. D —— 1
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Here y3 = —y1 — v2.



The transformation

T=—yi —ys —iye, Y= —yive(y1 +y2)

brings H to the polynomial form

0? 0? 2 , 0? 0
L=-21-——6 St —2(143v) .
¥ 02 y@x@y + 37 0y? (1+3v) Ox
In the trigonometric case the transformation to a
polynomial form is given by

T = cosyy + cosya + cos (y1 + y2) — 3,

y = siny; + sinys — sin (y1 + y2).



Theorem. The transformation

. ©'(y1) — 9'(y2) y— p(y1) — p(y2)

o(y1)e' (y2) — p(y2)¢ (y1) o(y1)e' (y2) — p(y2)9' (y1)

brings the elliptic Calogero-Moser Hamiltonian to a polynomial
form.



Factorization of the Wronskian.

Consider the Wronkian W = —~ — — — —% of the

transformation. It turns out that W can be written in the
factorized form:

o(r —y)o(x+2y)o(—y — 22)

oi(z) o} (y) of (—z — y)

W(%,y) =

Here o the Weierstrass sigma-function. The function o is the
sigma-function associated with any half-period w. By definition,

oi1(z) = ole +w) exp ( AC) m)

o(w) o(w)
Notice that for the trigonometric degeneration we arrive at

sin(z — y) sin(z + 2y) sin(—y — 2x)

W(z,y) = cos3(x) cos3(y) cos3(z + y)




2. Classification of the polynomial forms

Consider second order differential operators

2 2 2

0 8 0

Ox2 oz

ez, y)aay T fy) (2)

with polynomial coefficients. Denote by D(z,y) the determinant
CL(:L', y)C(:L', y) - b(l‘, y)2

The operators we are interested in should have three
important properties:
Property 1. We assume that the associated contravariant
metric

is flat.



This is equaivalent to
Ripi2=ab’by, + -+ c*day, = 0.
Example. For any constant «, 3,y the metric g with
a =23 —3zy+ alz? — 2y) + Bx + 2,

b= 2’y — 2y + azy + 2By + Yz,
c = xy? + 20y® + Bay + y(z* — 2y)
is flat.



Property 2. The operator should be potential. This means that

2(1)6 —cd + c(az + by) — b(by + cy)>

By D (3)

B ﬂ(bd— ae + a(by + cy) — blay +by)>
Oz D '

The properties 1 and 2 guaranty that L can be reduced to
the form ) )
- 0 0
L=—+—+V
0 Tap T (z,y)

by a proper change of variables.



Observation 2. (A. Turbiner). Known polynomial forms for
the Calogero-Moser type Hamiltonians preserve some finite -
dimensional vector spaces of polynomials.

In this talk we considier operators (2) with polynomial
coefficients that satisfy the following condition:

Property 3. The operator has to preserve the vector space of
all polynomials P(z,y) such that deg P < n for some n > 1.



If L satisfies Property 3 then the coefficients of L have the
following structure

a= q1x4 + qzx3y + Q3x2y2 + k2 + k2x2y + kg:{:y2+

a12” + aszy + azy® + asx + asy + ag;

1
b= q1x3y+q2x2y2+q3wy3+§ (k'4x3+(k1 +k5)x2y+(kz+k6)xy2+k3y3) +

biz? + bazy + bsy? + bax + bsy + be;

c = qr’y? + ey + gyt + kaxy + kszy? + key®+
61132 + coxy + 03y2 + cyx + c5y + cg;



d=(1-n) (2(q1x3+qu2y+Q3xy2)+k7m2+(k2+kg—k6)wy+k3y2> n

dix + day + ds;

e=(l-n) (2(Q1$2y+Q256y2+Q3y3)+k4$2+(/€5+/€7—k’1)$y+k8y2)+
e1x + e2y + es;

f=n(n=1)(a19® + g2oy + asy® + (ke = k) + (ks — o)y ) + fi.

The dimension of the space of such operators equals 36.

The group G L3 acts on this vector space by the formula
P Q
Ea

P=—=, g= L=RT"LR",

R

where P, (), R are polynomials of degree one in x and y.



This representation is a sum of irreducible representations V7,
V5 and V3 of dimensions 27, 8 and 1 correspondingly. A basis in
V5 is given by

x1:5k7—k5—7k1, $2:5k8—k2—7k‘6,
r3 = bdy + 2(n — 1)(2&1 + bQ), Ty = ey + 2(n — 1)(2b1 + 62),
T5 = bdy + Q(TL — 1)(2b3 + CLQ), Tg = 9eg + 2(n — 1)(203 + bg),
x7 = bdz +2(n — 1)(as + bs), xg = bes + 2(n — 1)(bs + ¢c5).

The generic orbit of the action on V5 has dimension 6. There are
two polynomial invariants of the action:

I = x% — x3T6 + x% + 3x425 + 3(n — 1)(z127 + T228),
and
I, = 295% — 355%% — 3w3x§ + ng + 9z 425(x3 + x6)+

9(n—1)(z12307+T20628— 201 T6T7—2X2X3T8+3X2T4T7+321T5L8).



Flat potential operators with discrete symmetries

For almost all known examples the operator L that satisfies
Properties 1-3 possesses additional finite group of discrete
symmetries.

Example. The operator with coefficients
0 =222+ %) +oz® + By?,  b=ay(a®+ ) + (@ — By,
c =132 (x% + y?) + B2? + ay?, d=2(n—1Dz(\— 2% —1y?),
e=2(n-1y(A\—a>—¢?), f=nn-1)(2"+y).

satisfies Properties 1-3, and possesses the discrete group of
symmetries isomorphic Dy, generated by reflections

rT— =T,y —=Y, rT—=T, Y = Y, rT—=Y,Yy—2x.



Consider the case when L is invariant with respect to a
reflection. Using a transformation, we reduce the reflection to
the form T = z, § = —y. Then the coeflicients of the operator L
have the following symmetry properties:

a(a:, _y) = a(a:, y)7 b({E, _y) = _b(x7 y)7 C(.I‘, _y) = C(.T, y)7
d(z,—y) =d(z,y), elr,—y)=—e(x,y), [flz,—y)=[f(z,y)
The class of such operators admits the transformation group

ax + 3

~ Y
arT e — 4
vz 446’ Y (4)

yr+94

i‘:

Transformations L = ¢; L + ¢9 are also allowed.



The coefficients a, b and ¢ can be written in the form

1 1
a=P+Qy’, b= E(P’—R)er 5@’3/3,

1 1 1
— —p'__R ) 2, — 4.
c (S+12 4R+ay+2Qy
where deg P =4, deg(@Q =degR =degS = 2.

Under transformations (4) the polynomial P changes as
follows

~ + B
P= oy P, 5
(a4 ) (2 @
Definition. A differential operator L is called elliptic if the po-
lynomial P has four different roots on the Riemann sphere. It is
called trigonometric if P has one double root.



Classification of the elliptic models
In the elliptic case without loss of generality we set
P(z) =z(x — 1)(x — u).

Proposition 1. If the property 1 holds then any root of the
polynomial S is a root of the polynomial P. [J

It follows from Proposition 1 that there are two
alternatives: A: S=kz? and B: S =ka(zx—1).

Theorem 1. In Case A we obtain from 1212 = 0 that

S(z) =% R(z)= —g(ﬂv2 — 2x 4 3u — 2ux),

1
Q(x):g(a:Z—x—l—l%-uz—ux—u), o=0.
It follows from (3) that

1
d=5(1-n) (3(5952—4x—4u:c+3u)+(2x—1—u)y2)’

e= %(1—7@) Yy (9x+y2—6u—6), f= %n(n—l) (6w+y2>.

0



Theorem 2. In Case B
S(z)=z(z—1), R(z)=—3(x*—2uz+u),

1 1
Q($):§(:U2—2u56+2u2—u), o= §(2u—1),

d=(1-n) (2)\1(:U —u) + do(2? — z + 2ux — 4u® + 2u)+

21— u)(z — 2u) + (z — w)y?),

e= (1—n)(>\1y+/\2xy+xy+y3>,

fzn(n—l)()\gx—x—l—%yQ).



