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1. Introduction

Consider integrable Hamiltonians

H = ∆ + U(x1, ..., xn)

related to simple Lie algebras. For such Hamiltonians the
potential U is a rational, trigonometric or elliptic function. For
instance, the elliptic Calogero-Moser Hamiltonian is given by

H = ∆ + g
∑
i>j

℘(xi − xj).

Observation 1 (A.Turbiner). Many of these Hamiltonians
admit a change of variables that bring it to a differential ope-
rator with polynomial coefficients.



Example. Consider the Calogero model with n = 3:

H = ∆ + g

3∑
i>j

1

(xi − xj)2
.

Let Y =
∑3

i=1 xi and yi = xi − Y
3 . Then

∆ = −3
∂2

∂Y 2
− 2

3

( ∂2
∂y21

+
∂2

∂y22
− ∂2

∂y1∂y2

)
.

Thus we have reduced the Hamiltonian to the following two
dimensional one:

H = −1

3

( ∂2
∂y21

+
∂2

∂y22
− ∂2

∂y1∂y2

)
+ ν(ν − 1)

3∑
i>j

1

(yi − yj)2
. (1)

Here y3 = −y1 − y2.



The transformation

x = −y21 − y22 − y1y2, y = −y1y2(y1 + y2)

brings H to the polynomial form

L = −2x
∂2

∂x2
− 6y

∂2

∂x∂y
+

2

3
x2

∂2

∂y2
− 2(1 + 3ν)

∂

∂x
. �

In the trigonometric case the transformation to a
polynomial form is given by

x = cos y1 + cos y2 + cos (y1 + y2)− 3,

y = sin y1 + sin y2 − sin (y1 + y2).



Theorem. The transformation

x =
℘′(y1)− ℘′(y2)

℘(y1)℘′(y2)− ℘(y2)℘′(y1)
, y =

℘(y1)− ℘(y2)

℘(y1)℘′(y2)− ℘(y2)℘′(y1)

brings the elliptic Calogero-Moser Hamiltonian to a polynomial
form.



Factorization of the Wronskian.

Consider the Wronkian W =
∂y

∂y2

∂x

∂y1
− ∂x

∂y2

∂y

∂y1
of the

transformation. It turns out that W can be written in the
factorized form:

W (x, y) =
σ(x− y)σ(x+ 2y)σ(−y − 2x)

σ31(x)σ31(y)σ31(−x− y)
.

Here σ the Weierstrass sigma-function. The function σ1 is the
sigma-function associated with any half-period ω. By definition,

σ1(x) =
σ(x+ ω)

σ(ω)
exp

(
− σ′(ω)

σ(ω)
x
)
.

Notice that for the trigonometric degeneration we arrive at

W (x, y) =
sin(x− y) sin(x+ 2y) sin(−y − 2x)

cos3(x) cos3(y) cos3(x+ y)
.



2. Classification of the polynomial forms

Consider second order differential operators

L = a(x, y)
∂2

∂x2
+ 2b(x, y)

∂2

∂x∂y
+ c(x, y)

∂2

∂y2
+ d(x, y)

∂

∂x
+

e(x, y)
∂

∂y
+ f(x, y) (2)

with polynomial coefficients. Denote by D(x, y) the determinant
a(x, y)c(x, y)− b(x, y)2.

The operators we are interested in should have three
important properties:
Property 1. We assume that the associated contravariant
metric

g1,1 = a , g1,2 = g2,1 = b , g2,2 = c ,

is flat.



This is equaivalent to

R1,2,1,2 = ab2 bxx + · · ·+ c2d ay = 0.

Example. For any constant α, β, γ the metric g with

a = x3 − 3xy + α(x2 − 2y) + βx+ 2γ,

b = x2y − 2y2 + αxy + 2βy + γx,

c = xy2 + 2αy2 + βxy + γ(x2 − 2y)

is flat.



Property 2. The operator should be potential. This means that

∂

∂y

(be− cd+ c(ax + by)− b(bx + cy)

D

)
(3)

=
∂

∂x

(bd− ae+ a(bx + cy)− b(ax + by)

D

)
.

The properties 1 and 2 guaranty that L can be reduced to
the form

L̄ =
∂2

∂x2
+

∂2

∂y2
+ V (x, y)

by a proper change of variables.



Observation 2. (A. Turbiner). Known polynomial forms for
the Calogero-Moser type Hamiltonians preserve some finite -
dimensional vector spaces of polynomials.

In this talk we considier operators (2) with polynomial
coefficients that satisfy the following condition:

Property 3. The operator has to preserve the vector space of
all polynomials P (x, y) such that degP 6 n for some n > 1.



If L satisfies Property 3 then the coefficients of L have the
following structure

a = q1x
4 + q2x

3y + q3x
2y2 + k1x

3 + k2x
2y + k3xy

2+

a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6;

b = q1x
3y+q2x

2y2+q3xy
3+

1

2

(
k4x

3+(k1+k5)x
2y+(k2+k6)xy

2+k3y
3
)

+

b1x
2 + b2xy + b3y

2 + b4x+ b5y + b6;

c = q1x
2y2 + q2xy

3 + q3y
4 + k4x

2y + k5xy
2 + k6y

3+

c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6;



d = (1−n)
(

2(q1x
3+q2x

2y+q3xy
2)+k7x

2+(k2+k8−k6)xy+k3y
2
)

+

d1x+ d2y + d3;

e = (1−n)
(

2(q1x
2y+q2xy

2+q3y
3)+k4x

2+(k5+k7−k1)xy+k8y
2
)

+

e1x+ e2y + e3;

f = n(n− 1)
(
q1x

2 + q2xy+ q3y
2 + (k7− k1)x+ (k8− k6)y

)
+ f1.

The dimension of the space of such operators equals 36.
The group GL3 acts on this vector space by the formula

x̃ =
P

R
, ỹ =

Q

R
, L̃ = R−nLRn,

where P,Q,R are polynomials of degree one in x and y.



This representation is a sum of irreducible representations V1,
V2 and V3 of dimensions 27, 8 and 1 correspondingly. A basis in
V2 is given by

x1 = 5k7 − k5 − 7k1, x2 = 5k8 − k2 − 7k6,

x3 = 5d1 + 2(n− 1)(2a1 + b2), x4 = 5e1 + 2(n− 1)(2b1 + c2),

x5 = 5d2 + 2(n− 1)(2b3 + a2), x6 = 5e2 + 2(n− 1)(2c3 + b2),

x7 = 5d3 + 2(n− 1)(a4 + b5), x8 = 5e3 + 2(n− 1)(b4 + c5).

The generic orbit of the action on V2 has dimension 6. There are
two polynomial invariants of the action:

I1 = x23 − x3x6 + x26 + 3x4x5 + 3(n− 1)(x1x7 + x2x8),

and

I2 = 2x33 − 3x23x6 − 3x3x
2
6 + 2x36 + 9x4x5(x3 + x6)+

9(n−1)(x1x3x7+x2x6x8−2x1x6x7−2x2x3x8+3x2x4x7+3x1x5x8).



Flat potential operators with discrete symmetries

For almost all known examples the operator L that satisfies
Properties 1-3 possesses additional finite group of discrete
symmetries.

Example. The operator with coefficients

a = x2(x2 + y2) + αx2 + βy2, b = xy(x2 + y2) + (α− β)xy,

c = y2(x2 + y2) + βx2 + αy2, d = 2(n− 1)x(λ− x2 − y2),

e = 2(n− 1)y(λ− x2 − y2), f = n(n− 1)(x2 + y2).

satisfies Properties 1-3, and possesses the discrete group of
symmetries isomorphic D4, generated by reflections

x→ −x, y → y, x→ x, y → −y, x→ y, y → x.



Consider the case when L is invariant with respect to a
reflection. Using a transformation, we reduce the reflection to
the form x̃ = x, ỹ = −y. Then the coefficients of the operator L
have the following symmetry properties:

a(x,−y) = a(x, y), b(x,−y) = −b(x, y), c(x,−y) = c(x, y),

d(x,−y) = d(x, y), e(x,−y) = −e(x, y), f(x,−y) = f(x, y).

The class of such operators admits the transformation group

x̃ =
αx+ β

γx+ δ
, ỹ =

y

γx+ δ
. (4)

Transformations L̃ = c1L+ c2 are also allowed.



The coefficients a, b and c can be written in the form

a = P +Qy2, b =
1

4
(P ′ −R)y +

1

2
Q′y3,

c =
(
S +

1

12
P ′′ − 1

4
R′ + σ

)
y2 +

1

2
Q′′y4.

where degP = 4, degQ = degR = degS = 2.

Under transformations (4) the polynomial P changes as
follows

P̃ = (γx+ δ)4P
(αx+ β

γx+ δ

)
. (5)

Definition. A differential operator L is called elliptic if the po-
lynomial P has four different roots on the Riemann sphere. It is
called trigonometric if P has one double root.



Classification of the elliptic models

In the elliptic case without loss of generality we set

P (x) = x(x− 1)(x− u).

Proposition 1. If the property 1 holds then any root of the
polynomial S is a root of the polynomial P. �

It follows from Proposition 1 that there are two
alternatives: A: S = kx2 and B: S = kx(x− 1).

Theorem 1. In Case A we obtain from R1,2,1,2 = 0 that

S(x) = x2, R(x) = −5

3
(x2 − 2x+ 3u− 2ux),

Q(x) =
1

9
(x2 − x+ 1 + u2 − ux− u), σ = 0.

It follows from (3) that

d =
1

9
(1− n)

(
3(5x2 − 4x− 4ux+ 3u) + (2x− 1− u) y2

)
,

e =
2

9
(1−n) y

(
9x+y2−6u−6

)
, f =

1

9
n(n−1)

(
6x+y2

)
. �



Theorem 2. In Case B

S(x) = x(x− 1), R(x) = −3(x2 − 2ux+ u),

Q(x) =
1

2
(x2 − 2ux+ 2u2 − u), σ =

1

3
(2u− 1),

d = (1− n)
(

2λ1(x− u) + λ2(x
2 − x+ 2ux− 4u2 + 2u)+

2(1− u)(x− 2u) + (x− u) y2
)
,

e = (1− n)
(
λ1y + λ2xy + xy + y3

)
,

f = n(n− 1)
(
λ2x− x+

1

2
y2
)
.


