Polynomial forms for Calogero-type Hamiltonians

Vladimir V. Sokolov
Landau Institute for Theoretical Physics,

Joint with A. Turbiner

Chernogolovka, 08.08.2014

1. Introduction

Consider integrable Hamiltonians

$$
H=\Delta+U\left(x_{1}, \ldots, x_{n}\right)
$$

related to simple Lie algebras. For such Hamiltonians the potential U is a rational, trigonometric or elliptic function. For instance, the elliptic Calogero-Moser Hamiltonian is given by

$$
H=\Delta+g \sum_{i>j} \wp\left(x_{i}-x_{j}\right)
$$

Observation 1 (A.Turbiner). Many of these Hamiltonians admit a change of variables that bring it to a differential operator with polynomial coefficients.

Example. Consider the Calogero model with $n=3$:

$$
H=\Delta+g \sum_{i>j}^{3} \frac{1}{\left(x_{i}-x_{j}\right)^{2}}
$$

Let $Y=\sum_{i=1}^{3} x_{i}$ and $y_{i}=x_{i}-\frac{Y}{3}$. Then

$$
\Delta=-3 \frac{\partial^{2}}{\partial Y^{2}}-\frac{2}{3}\left(\frac{\partial^{2}}{\partial y_{1}^{2}}+\frac{\partial^{2}}{\partial y_{2}^{2}}-\frac{\partial^{2}}{\partial y_{1} \partial y_{2}}\right)
$$

Thus we have reduced the Hamiltonian to the following two dimensional one:

$$
\begin{equation*}
\mathcal{H}=-\frac{1}{3}\left(\frac{\partial^{2}}{\partial y_{1}^{2}}+\frac{\partial^{2}}{\partial y_{2}^{2}}-\frac{\partial^{2}}{\partial y_{1} \partial y_{2}}\right)+\nu(\nu-1) \sum_{i>j}^{3} \frac{1}{\left(y_{i}-y_{j}\right)^{2}} \tag{1}
\end{equation*}
$$

Here $y_{3}=-y_{1}-y_{2}$.

The transformation

$$
x=-y_{1}^{2}-y_{2}^{2}-y_{1} y_{2}, \quad y=-y_{1} y_{2}\left(y_{1}+y_{2}\right)
$$

brings \mathcal{H} to the polynomial form

$$
L=-2 x \frac{\partial^{2}}{\partial x^{2}}-6 y \frac{\partial^{2}}{\partial x \partial y}+\frac{2}{3} x^{2} \frac{\partial^{2}}{\partial y^{2}}-2(1+3 \nu) \frac{\partial}{\partial x}
$$

In the trigonometric case the transformation to a polynomial form is given by

$$
\begin{gathered}
x=\cos y_{1}+\cos y_{2}+\cos \left(y_{1}+y_{2}\right)-3 \\
y=\sin y_{1}+\sin y_{2}-\sin \left(y_{1}+y_{2}\right)
\end{gathered}
$$

Theorem. The transformation

$x=\frac{\wp^{\prime}\left(y_{1}\right)-\wp^{\prime}\left(y_{2}\right)}{\wp\left(y_{1}\right) \wp^{\prime}\left(y_{2}\right)-\wp\left(y_{2}\right) \wp^{\prime}\left(y_{1}\right)}, \quad y=\frac{\wp\left(y_{1}\right)-\wp\left(y_{2}\right)}{\wp\left(y_{1}\right) \wp^{\prime}\left(y_{2}\right)-\wp\left(y_{2}\right) \wp^{\prime}\left(y_{1}\right)}$
brings the elliptic Calogero-Moser Hamiltonian to a polynomial form.

Factorization of the Wronskian.

Consider the Wronkian $W=\frac{\partial y}{\partial y_{2}} \frac{\partial x}{\partial y_{1}}-\frac{\partial x}{\partial y_{2}} \frac{\partial y}{\partial y_{1}}$ of the transformation. It turns out that W can be written in the factorized form:

$$
W(x, y)=\frac{\sigma(x-y) \sigma(x+2 y) \sigma(-y-2 x)}{\sigma_{1}^{3}(x) \sigma_{1}^{3}(y) \sigma_{1}^{3}(-x-y)} .
$$

Here σ the Weierstrass sigma-function. The function σ_{1} is the sigma-function associated with any half-period ω. By definition,

$$
\sigma_{1}(x)=\frac{\sigma(x+\omega)}{\sigma(\omega)} \exp \left(-\frac{\sigma^{\prime}(\omega)}{\sigma(\omega)} x\right) .
$$

Notice that for the trigonometric degeneration we arrive at

$$
W(x, y)=\frac{\sin (x-y) \sin (x+2 y) \sin (-y-2 x)}{\cos ^{3}(x) \cos ^{3}(y) \cos ^{3}(x+y)} .
$$

2. Classification of the polynomial forms

Consider second order differential operators

$$
\begin{gather*}
L=a(x, y) \frac{\partial^{2}}{\partial x^{2}}+2 b(x, y) \frac{\partial^{2}}{\partial x \partial y}+c(x, y) \frac{\partial^{2}}{\partial y^{2}}+d(x, y) \frac{\partial}{\partial x}+ \\
e(x, y) \frac{\partial}{\partial y}+f(x, y) \tag{2}
\end{gather*}
$$

with polynomial coefficients. Denote by $D(x, y)$ the determinant $a(x, y) c(x, y)-b(x, y)^{2}$.

The operators we are interested in should have three important properties:
Property 1. We assume that the associated contravariant metric

$$
g^{1,1}=a, g^{1,2}=g^{2,1}=b, g^{2,2}=c,
$$

is flat.

This is equaivalent to

$$
R_{1,2,1,2}=a b^{2} b_{x x}+\cdots+c^{2} d a_{y}=0
$$

Example. For any constant α, β, γ the metric g with

$$
\begin{gathered}
a=x^{3}-3 x y+\alpha\left(x^{2}-2 y\right)+\beta x+2 \gamma \\
b=x^{2} y-2 y^{2}+\alpha x y+2 \beta y+\gamma x \\
c=x y^{2}+2 \alpha y^{2}+\beta x y+\gamma\left(x^{2}-2 y\right)
\end{gathered}
$$

is flat.

Property 2. The operator should be potential. This means that

$$
\begin{align*}
& \frac{\partial}{\partial y}\left(\frac{b e-c d+c\left(a_{x}+b_{y}\right)-b\left(b_{x}+c_{y}\right)}{D}\right) \tag{3}\\
= & \frac{\partial}{\partial x}\left(\frac{b d-a e+a\left(b_{x}+c_{y}\right)-b\left(a_{x}+b_{y}\right)}{D}\right) .
\end{align*}
$$

The properties 1 and 2 guaranty that L can be reduced to the form

$$
\bar{L}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+V(x, y)
$$

by a proper change of variables.

Observation 2. (A. Turbiner). Known polynomial forms for the Calogero-Moser type Hamiltonians preserve some finite dimensional vector spaces of polynomials.

In this talk we considier operators (2) with polynomial coefficients that satisfy the following condition:

Property 3. The operator has to preserve the vector space of all polynomials $P(x, y)$ such that $\operatorname{deg} P \leqslant n$ for some $n>1$.

If L satisfies Property 3 then the coefficients of L have the following structure

$$
\begin{gathered}
a=q_{1} x^{4}+q_{2} x^{3} y+q_{3} x^{2} y^{2}+k_{1} x^{3}+k_{2} x^{2} y+k_{3} x y^{2}+ \\
a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6} ; \\
b=q_{1} x^{3} y+q_{2} x^{2} y^{2}+q_{3} x y^{3}+\frac{1}{2}\left(k_{4} x^{3}+\left(k_{1}+k_{5}\right) x^{2} y+\left(k_{2}+k_{6}\right) x y^{2}+k_{3} y^{3}\right)+ \\
b_{1} x^{2}+b_{2} x y+b_{3} y^{2}+b_{4} x+b_{5} y+b_{6} ; \\
c=q_{1} x^{2} y^{2}+q_{2} x y^{3}+q_{3} y^{4}+k_{4} x^{2} y+k_{5} x y^{2}+k_{6} y^{3}+ \\
c_{1} x^{2}+c_{2} x y+c_{3} y^{2}+c_{4} x+c_{5} y+c_{6} ;
\end{gathered}
$$

$$
\begin{gathered}
d=(1-n)\left(2\left(q_{1} x^{3}+q_{2} x^{2} y+q_{3} x y^{2}\right)+k_{7} x^{2}+\left(k_{2}+k_{8}-k_{6}\right) x y+k_{3} y^{2}\right)+ \\
d_{1} x+d_{2} y+d_{3} ; \\
e=(1-n)\left(2\left(q_{1} x^{2} y+q_{2} x y^{2}+q_{3} y^{3}\right)+k_{4} x^{2}+\left(k_{5}+k_{7}-k_{1}\right) x y+k_{8} y^{2}\right)+ \\
e_{1} x+e_{2} y+e_{3} ; \\
f=n(n-1)\left(q_{1} x^{2}+q_{2} x y+q_{3} y^{2}+\left(k_{7}-k_{1}\right) x+\left(k_{8}-k_{6}\right) y\right)+f_{1}
\end{gathered}
$$

The dimension of the space of such operators equals 36 .
The group $G L_{3}$ acts on this vector space by the formula

$$
\tilde{x}=\frac{P}{R}, \quad \tilde{y}=\frac{Q}{R}, \quad \tilde{L}=R^{-n} L R^{n}
$$

where P, Q, R are polynomials of degree one in x and y.

This representation is a sum of irreducible representations V_{1}, V_{2} and V_{3} of dimensions 27, 8 and 1 correspondingly. A basis in V_{2} is given by

$$
\begin{aligned}
x_{1}=5 k_{7}-k_{5}-7 k_{1}, & x_{2}=5 k_{8}-k_{2}-7 k_{6}, \\
x_{3}=5 d_{1}+2(n-1)\left(2 a_{1}+b_{2}\right), & x_{4}=5 e_{1}+2(n-1)\left(2 b_{1}+c_{2}\right), \\
x_{5}=5 d_{2}+2(n-1)\left(2 b_{3}+a_{2}\right), & x_{6}=5 e_{2}+2(n-1)\left(2 c_{3}+b_{2}\right), \\
x_{7}=5 d_{3}+2(n-1)\left(a_{4}+b_{5}\right), & x_{8}=5 e_{3}+2(n-1)\left(b_{4}+c_{5}\right) .
\end{aligned}
$$

The generic orbit of the action on V_{2} has dimension 6. There are two polynomial invariants of the action:

$$
I_{1}=x_{3}^{2}-x_{3} x_{6}+x_{6}^{2}+3 x_{4} x_{5}+3(n-1)\left(x_{1} x_{7}+x_{2} x_{8}\right),
$$

and

$$
I_{2}=2 x_{3}^{3}-3 x_{3}^{2} x_{6}-3 x_{3} x_{6}^{2}+2 x_{6}^{3}+9 x_{4} x_{5}\left(x_{3}+x_{6}\right)+
$$

$9(n-1)\left(x_{1} x_{3} x_{7}+x_{2} x_{6} x_{8}-2 x_{1} x_{6} x_{7}-2 x_{2} x_{3} x_{8}+3 x_{2} x_{4} x_{7}+3 x_{1} x_{5} x_{8}\right)$.

Flat potential operators with discrete symmetries

For almost all known examples the operator L that satisfies Properties 1-3 possesses additional finite group of discrete symmetries.

Example. The operator with coefficients

$$
\begin{array}{cl}
a=x^{2}\left(x^{2}+y^{2}\right)+\alpha x^{2}+\beta y^{2}, & b=x y\left(x^{2}+y^{2}\right)+(\alpha-\beta) x y, \\
c=y^{2}\left(x^{2}+y^{2}\right)+\beta x^{2}+\alpha y^{2}, & d=2(n-1) x\left(\lambda-x^{2}-y^{2}\right), \\
e=2(n-1) y\left(\lambda-x^{2}-y^{2}\right), & f=n(n-1)\left(x^{2}+y^{2}\right) .
\end{array}
$$

satisfies Properties 1-3, and possesses the discrete group of symmetries isomorphic D_{4}, generated by reflections

$$
x \rightarrow-x, y \rightarrow y, \quad x \rightarrow x, y \rightarrow-y, \quad x \rightarrow y, y \rightarrow x .
$$

Consider the case when L is invariant with respect to a reflection. Using a transformation, we reduce the reflection to the form $\tilde{x}=x, \tilde{y}=-y$. Then the coefficients of the operator L have the following symmetry properties:

$$
\begin{aligned}
a(x,-y)=a(x, y), \quad b(x,-y)=-b(x, y), \quad c(x,-y)=c(x, y) \\
d(x,-y)=d(x, y), \quad e(x,-y)=-e(x, y), \quad f(x,-y)=f(x, y)
\end{aligned}
$$

The class of such operators admits the transformation group

$$
\begin{equation*}
\tilde{x}=\frac{\alpha x+\beta}{\gamma x+\delta}, \quad \tilde{y}=\frac{y}{\gamma x+\delta} \tag{4}
\end{equation*}
$$

Transformations $\tilde{L}=c_{1} L+c_{2}$ are also allowed.

The coefficients a, b and c can be written in the form

$$
\begin{gathered}
a=P+Q y^{2}, \quad b=\frac{1}{4}\left(P^{\prime}-R\right) y+\frac{1}{2} Q^{\prime} y^{3}, \\
c=\left(S+\frac{1}{12} P^{\prime \prime}-\frac{1}{4} R^{\prime}+\sigma\right) y^{2}+\frac{1}{2} Q^{\prime \prime} y^{4} .
\end{gathered}
$$

where $\operatorname{deg} P=4, \quad \operatorname{deg} Q=\operatorname{deg} R=\operatorname{deg} S=2$.
Under transformations (4) the polynomial P changes as follows

$$
\begin{equation*}
\tilde{P}=(\gamma x+\delta)^{4} P\left(\frac{\alpha x+\beta}{\gamma x+\delta}\right) \tag{5}
\end{equation*}
$$

Definition. A differential operator L is called elliptic if the polynomial P has four different roots on the Riemann sphere. It is called trigonometric if P has one double root.

Classification of the elliptic models

In the elliptic case without loss of generality we set

$$
P(x)=x(x-1)(x-u)
$$

Proposition 1. If the property 1 holds then any root of the polynomial S is a root of the polynomial $P . \square$

It follows from Proposition 1 that there are two alternatives: A: $S=k x^{2}$ and \quad B: $S=k x(x-1)$. Theorem 1. In Case \mathbf{A} we obtain from $R_{1,2,1,2}=0$ that

$$
\begin{gathered}
S(x)=x^{2}, \quad R(x)=-\frac{5}{3}\left(x^{2}-2 x+3 u-2 u x\right) \\
Q(x)=\frac{1}{9}\left(x^{2}-x+1+u^{2}-u x-u\right), \quad \sigma=0
\end{gathered}
$$

It follows from (3) that

$$
\begin{aligned}
& d=\frac{1}{9}(1-n)\left(3\left(5 x^{2}-4 x-4 u x+3 u\right)+(2 x-1-u) y^{2}\right), \\
e= & \frac{2}{9}(1-n) y\left(9 x+y^{2}-6 u-6\right), \quad f=\frac{1}{9} n(n-1)\left(6 x+y^{2}\right) .
\end{aligned}
$$

Theorem 2. In Case B

$$
\begin{gathered}
S(x)=x(x-1), \quad R(x)=-3\left(x^{2}-2 u x+u\right) \\
Q(x)=\frac{1}{2}\left(x^{2}-2 u x+2 u^{2}-u\right), \quad \sigma=\frac{1}{3}(2 u-1) \\
d=(1-n)\left(2 \lambda_{1}(x-u)+\lambda_{2}\left(x^{2}-x+2 u x-4 u^{2}+2 u\right)+\right. \\
\left.2(1-u)(x-2 u)+(x-u) y^{2}\right) \\
e=(1-n)\left(\lambda_{1} y+\lambda_{2} x y+x y+y^{3}\right) \\
f=n(n-1)\left(\lambda_{2} x-x+\frac{1}{2} y^{2}\right)
\end{gathered}
$$

