KPII: Cauchy-Jost function, Darboux transformations and totally nonnegative matrices

M. Boiti, F. Pempinelli and A. Pogrebkov

VII-th International Conference
SOLITONS, COLLAPSES AND TURBULENCE:
Achievements, Developments and Perspectives (SCT-14)
CHERNOGOLOVKA, August 4-8, 2014
Zakharov's 75 anniversary

Multisoliton solutions of the KPII equation: $\left(u_{t}-6 u u_{x_{1}}+u_{x_{1} x_{1} x_{1}}\right)_{x_{1}}=-3 u_{x_{2} x_{2}}$ are known to be parametrized by means of totally nonnegative matrices

Notation. Lax operator

$$
\mathcal{L}\left(x, \partial_{x}\right)=-\partial_{x_{2}}+\partial_{x_{1}}^{2}-u(x)
$$

Jost solutions of \mathcal{L} and its dual \mathcal{L}^{\prime} :

$$
\mathcal{L} \varphi(x, \lambda)=0, \quad \mathcal{L}^{\prime} \psi(x, \lambda)=0, \quad \lambda \in \mathbb{C}
$$

are normalized by condition

$$
\lim _{\lambda \rightarrow \infty} e^{-\ell(\lambda) x} \varphi(x, \lambda)=\lim _{\lambda \rightarrow \infty} e^{\ell(\lambda) x} \psi(x, \lambda)=1
$$

where

$$
\ell(\lambda) x=\lambda x_{1}+\lambda^{2} x_{2}+\lambda^{3} x_{3}+\ldots
$$

Cauchy-Jost function (Cauchy-Baker-Akhiezer kernel, see Grinevich-Orlov, 1997) is defined as

$$
F\left(x, \lambda, \lambda^{\prime}\right)=\int_{\left(\lambda-\lambda^{\prime}\right)_{\mathrm{Re}} \infty}^{x_{1}} d y_{1} \psi(y, \lambda) \varphi\left(y, \lambda^{\prime}\right), \quad y_{i}=x_{i}, \quad i \geq 2
$$

where factor $\left(\lambda-\lambda^{\prime}\right)_{\text {Re }}$ in the limit of the integral denotes sign of infinity. Just by definition we have that F has pole with unity residual at $\lambda^{\prime}=\lambda$

$$
F\left(x, \lambda, \lambda^{\prime}\right)=\frac{1}{\lambda^{\prime}-\lambda}+O(1), \quad \lambda^{\prime} \sim \lambda
$$

and obey asymptotic relations

$$
\lim _{\lambda^{\prime} \rightarrow \infty} e^{-\ell\left(\lambda^{\prime}\right) x} \lambda^{\prime} F\left(x, \lambda, \lambda^{\prime}\right)=\psi(x, \lambda), \quad \lim _{\lambda \rightarrow \infty} e^{\ell(\lambda) x} \lambda F\left(x, \lambda, \lambda^{\prime}\right)=-\varphi\left(x, \lambda^{\prime}\right)
$$

In the case where Hirota bilinear identity is valid we have that

$$
\oint_{C} \frac{d \lambda^{\prime \prime}}{2 \pi i} F\left(x, \lambda, \lambda^{\prime \prime}\right) F\left(y, \lambda^{\prime \prime}, \lambda^{\prime}\right)=F\left(y, \lambda, \lambda^{\prime}\right)-F\left(x, \lambda, \lambda^{\prime}\right)
$$

for λ^{\prime} and λ inside the contour C.

Cauchy-Jost function (Cauchy-Baker-Akhiezer kernel, see Grinevich-Orlov, 1997) is defined as

$$
F\left(x, \lambda, \lambda^{\prime}\right)=\int_{\left(\lambda-\lambda^{\prime}\right)_{\mathrm{Re}} \infty}^{x_{1}} d y_{1} \psi(y, \lambda) \varphi\left(y, \lambda^{\prime}\right), \quad y_{i}=x_{i}, \quad i \geq 2
$$

where factor $\left(\lambda-\lambda^{\prime}\right)_{\text {Re }}$ in the limit of the integral denotes sign of infinity. Just by definition we have that F has pole with unity residual at $\lambda^{\prime}=\lambda$

$$
F\left(x, \lambda, \lambda^{\prime}\right)=\frac{1}{\lambda^{\prime}-\lambda}+O(1), \quad \lambda^{\prime} \sim \lambda
$$

and obey asymptotic relations

$$
\lim _{\lambda^{\prime} \rightarrow \infty} e^{-\ell\left(\lambda^{\prime}\right) x} \lambda^{\prime} F\left(x, \lambda, \lambda^{\prime}\right)=\psi(x, \lambda), \quad \lim _{\lambda \rightarrow \infty} e^{\ell(\lambda) x} \lambda F\left(x, \lambda, \lambda^{\prime}\right)=-\varphi\left(x, \lambda^{\prime}\right)
$$

In the case where Hirota bilinear identity is valid we have that

$$
\oint_{C} \frac{d \lambda^{\prime \prime}}{2 \pi i} F\left(x, \lambda, \lambda^{\prime \prime}\right) F\left(y, \lambda^{\prime \prime}, \lambda^{\prime}\right)=F\left(y, \lambda, \lambda^{\prime}\right)-F\left(x, \lambda, \lambda^{\prime}\right)
$$

for λ^{\prime} and λ inside the contour C. In solitonic case we prove also that

$$
\partial_{x_{k}} F\left(x, \lambda, \lambda^{\prime}\right)=-\oint_{C} \frac{d \lambda^{\prime \prime}}{2 \pi i} F\left(x, \lambda, \lambda^{\prime \prime}\right) \lambda^{\prime \prime k} F\left(x, \lambda^{\prime \prime}, \lambda^{\prime}\right), \quad k=0,1, \ldots
$$

$\left(N_{a}, N_{b}\right)$-soliton solutions are given in terms of the tau-function:

$$
u(x)=-2 \partial_{x_{1}}^{2} \log \tau(x) \equiv-2 \partial_{x_{1}}^{2} \log \tau^{\prime}(x)
$$

i.e., in terms of determinants
$\tau(x)=\operatorname{det}\left(\mathcal{V} e^{\ell x} \mathcal{D}\right), \quad \tau^{\prime}(x)=\operatorname{det}\left(\mathcal{D}^{\prime} e^{-\ell x} \gamma \mathcal{V}^{\prime}\right), \quad \tau(x)=\operatorname{const}\left(\prod_{n=1}^{\mathcal{N}} e^{\ell_{n} x}\right) \tau^{\prime}(x)$
By means of the Binet-Cauchy formula:

$$
\tau(x)=\sum_{1 \leq n_{1}, \ldots<n_{N_{b}} \leq \mathcal{N}} \mathcal{D}\left(\left\{n_{i}\right\}\right) \mathcal{V}\left(\left\{n_{i}\right\}\right) \prod_{l=1}^{N_{b}} e^{\ell_{n_{l}} x}
$$

where $\mathcal{D}\left(\left\{n_{i}\right\}\right), \mathcal{V}\left(\left\{n_{i}\right\}\right)$ are maximal minors of matrices \mathcal{D} and \mathcal{V}.

Here $N_{a}, N_{b} \geq 1, \mathcal{N}=N_{a}+N_{b}, \mathcal{N} \geq 2$. \mathcal{N} real parameters: $\kappa_{1}<\kappa_{2}<\ldots<$ $\kappa_{\mathcal{N}}$, Let $\ell(\lambda) x=\lambda x_{1}+\lambda^{2} x_{2}+\ldots, \ell_{n} x=\kappa_{n} x_{1}+\kappa_{n}^{2} x_{2}+\ldots$ and

$$
\mathcal{N} \times \mathcal{N} \text {-matrix : } \quad e^{\ell x}=\operatorname{diag}\left\{e^{\ell_{n} x}\right\}_{n=1}^{\mathcal{N}}
$$

real constant $\mathcal{N} \times N_{b}$-matrix $\mathcal{D}, \quad N_{a} \times \mathcal{N}$-matrix $\mathcal{D}^{\prime}, \quad \mathcal{D}^{\prime} \mathcal{D}=0$
Two incomplete Vandermonde matrices:

$$
\mathcal{V}=\left(\begin{array}{lll}
1 & \ldots & 1 \\
\kappa_{1} & \ldots & \kappa_{\mathcal{N}} \\
\vdots & & \vdots \\
\kappa_{1}^{N_{b}-1} & \ldots & \kappa_{\mathcal{N}}^{N_{b}-1}
\end{array}\right), \quad \mathcal{V}^{\prime}=\left(\begin{array}{lll}
1 & \ldots & \kappa_{1}^{N_{a}-1} \\
\vdots & & \vdots \\
1 & \ldots & \kappa_{\mathcal{N}}^{N_{a}-1}
\end{array}\right)
$$

$\mathcal{V} A^{-1} \mathcal{V}^{\prime}=0, \quad A=\operatorname{diag}\left\{a_{n}\right\}_{n=1}^{\mathcal{N}}, \quad a_{n}=\prod_{\substack{n^{\prime}=1 \\ n^{\prime} \neq n}}^{\mathcal{N}}\left(\kappa_{n}-\kappa_{n^{\prime}}\right), \quad a_{n}=A\left(\kappa_{n}\right)$

$$
A(\lambda)=\prod_{n=1}^{\mathcal{N}}\left(\lambda-\kappa_{n}\right)
$$

Jost solutions are renormalized here in order to get

$$
\begin{aligned}
& e^{-\ell(\lambda) x} \varphi(x, \lambda) \text { polynomial in } \lambda: e^{-\ell(\lambda) x} \varphi(x, \lambda)=\lambda^{N_{b}}+\ldots \\
& e^{\ell(\lambda) x} \psi(x, \lambda) \text { polynomial in } \lambda: e^{\ell(\lambda) x} \psi(x, \lambda)=\lambda^{N_{a}}+\ldots
\end{aligned}
$$

Discrete values of the Jost solutions:

$$
\varphi_{n}(x)=\varphi\left(x, \kappa_{n}\right), \quad \psi_{n}(x)=\psi\left(x, \kappa_{n}\right), \quad n=1, \ldots, \mathcal{N} .
$$

obey

$$
\left(\varphi_{1}(x), \ldots, \varphi_{\mathcal{N}}(x)\right) \mathcal{D}=0, \quad \mathcal{D}^{\prime}\left(\psi_{1}(x), \ldots, \psi_{\mathcal{N}}(x)\right)^{\mathrm{T}}=0
$$

Conditions of analyticity imposed on the Jost solutions are equivalent to relations

$$
\begin{aligned}
& \left(\varphi_{1}(x), \ldots, \varphi_{\mathcal{N}}(x)\right) e^{-\ell x} A^{-1} \mathcal{V}^{\prime}=(\underbrace{0, \ldots, 0,1}_{N_{a}}), \\
& \mathcal{V} A^{-1} e^{\ell x}\left(\psi_{1}(x), \ldots, \psi_{\mathcal{N}}(x)\right)^{\mathrm{T}}=(\underbrace{0, \ldots, 0,1}_{N_{b}})^{\mathrm{T}} .
\end{aligned}
$$

that are defining the Jost solutions themselves.

Cauchy-Jost function.

$$
F\left(x, \lambda, \lambda^{\prime}\right)=\int_{\left(\lambda-\lambda^{\prime}\right)_{\mathrm{Re}} \infty}^{x_{1}} d y_{1} \psi(y, \lambda) \varphi\left(y, \lambda^{\prime}\right), \quad y_{2}=x_{2}, \ldots
$$

This function obeys

$$
\begin{gathered}
F_{x_{1}}\left(x, \lambda, \lambda^{\prime}\right)=\psi(x, \lambda) \varphi\left(x, \lambda^{\prime}\right) \\
F_{x_{2}}\left(x, \lambda, \lambda^{\prime}\right)=\psi(x, \lambda) \varphi_{x_{1}}\left(x, \lambda^{\prime}\right)-\psi_{x_{1}}(x, \lambda) \varphi\left(x, \lambda^{\prime}\right) \\
F\left(x, \lambda, \lambda^{\prime}\right)=\frac{A(\lambda)}{\lambda^{\prime}-\lambda}+O(1), \quad \lambda^{\prime} \sim \lambda, \\
e^{\left(\ell(\lambda)-\ell\left(\lambda^{\prime}\right)\right) x} F\left(x, \lambda, \lambda^{\prime}\right) \equiv \int_{\left(\lambda-\lambda^{\prime}\right)_{\mathrm{Re}} \infty}^{x_{1}} d y_{1} e^{\left(\lambda-\lambda^{\prime}\right)\left(x_{1}-y_{1}\right)}\left(e^{\ell(\lambda) y} \psi(y, \lambda) e^{-\ell\left(\lambda^{\prime}\right) y} \varphi\left(y, \lambda^{\prime}\right)\right) \\
e^{\left(\ell(\lambda)-\ell\left(\lambda^{\prime}\right)\right) x} F\left(x, \lambda, \lambda^{\prime}\right)=\frac{A\left(\lambda^{\prime}\right)}{\lambda^{\prime}-\lambda}+A(\lambda) A\left(\lambda^{\prime}\right) \sum_{m, n=1}^{\mathcal{N}} \frac{f_{m n}(x)}{\left(\lambda-\kappa_{m}\right)\left(\lambda^{\prime}-\kappa_{n}\right)}
\end{gathered}
$$

Asymptotics for large λ and λ^{\prime} :

$$
\begin{aligned}
e^{\left(\ell(\lambda)-\ell\left(\lambda^{\prime}\right)\right) x} F\left(x, \lambda, \lambda^{\prime}\right) & =\frac{\lambda^{N_{a}-1} \lambda^{\prime N_{b}-1}}{\lambda^{\prime}-\lambda}\left(\lambda-\frac{1}{2} \sum_{m=1}^{\mathcal{N}} \kappa_{m}\right)\left(\lambda^{\prime}-\frac{1}{2} \sum_{m=1}^{\mathcal{N}} \kappa_{m}\right)- \\
& -\frac{1}{2} \int u(x) d x_{1}+\ldots
\end{aligned}
$$

Values at points κ 's:'

$$
\begin{aligned}
e^{\left(\ell_{m}-\ell\left(\lambda^{\prime}\right) x\right.} F\left(x, \kappa_{m}, \lambda^{\prime}\right) & =\frac{A\left(\lambda^{\prime}\right)}{\lambda^{\prime}-\kappa_{m}}+a_{m} A\left(\lambda^{\prime}\right) \sum_{n=1}^{\mathcal{N}} \frac{f_{m n}(x)}{\lambda^{\prime}-\kappa_{n}} \\
e^{\left(\ell(\lambda)-\ell_{n}\right) x} F\left(x, \lambda, \kappa_{n}\right) & =A(\lambda) a_{n} \sum_{m=1}^{\mathcal{N}} \frac{f_{m n}(x)}{\lambda^{\prime}-\kappa_{n}}
\end{aligned}
$$

are polynomials with the leading behavior:

$$
\begin{aligned}
e^{\left(\ell_{m}-\ell\left(\lambda^{\prime}\right)\right) x} F\left(x, \kappa_{m}, \lambda^{\prime}\right) & =\lambda^{N_{b}-1} \psi\left(x, \kappa_{m}\right)+\ldots, \\
e^{\left(\ell(\lambda)-\ell_{n}\right) x} F\left(x, \lambda, \kappa_{n}\right) & =-\lambda^{N_{a}-1} \psi\left(x, \kappa_{n}\right)+\ldots
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\lim _{\lambda^{\prime} \rightarrow \kappa_{n}} e^{\left(\ell_{m}-\ell\left(\lambda^{\prime}\right)\right) x} F\left(x, \kappa_{m}, \lambda^{\prime}\right) & =a_{m} \delta_{m n}+a_{m} f_{m n}(x) a_{n} \\
\lim _{\lambda \rightarrow \kappa_{m}} e^{\left(\ell(\lambda)-\ell_{n}\right) x} F\left(x, \lambda, \kappa_{n}\right) & =a_{m} f_{m n}(x) a_{n}
\end{aligned}
$$

Matrix $f(x)$ obeys properties

$$
f(x) e^{\ell x} A \mathcal{D}=0, \quad f(x) \mathcal{V}^{\prime}=-A^{-1} e^{-\ell x} \mathcal{V}^{\prime}
$$

that are defining this matrix:

$$
\begin{aligned}
& f(x)=-A^{-1} \mathcal{V}^{\prime}\left(\mathcal{D}^{\prime} e^{-\ell x} A^{-1} \mathcal{V}^{\prime}\right)^{-1} \mathcal{D}^{\prime} e^{-\ell x} \\
& f(x) A=-I+e^{\ell x} \mathcal{D}\left(\mathcal{V} e^{\ell x} \mathcal{D}\right)^{-1} \mathcal{V}
\end{aligned}
$$

This proves that $-f(x) A$ is the orthogonal projector: $f(x) A f(x)=-f(x)$. All standard objects of the the theory can be given in terms of the matrix $f(x)$:

$$
\begin{aligned}
& \left(\varphi_{1}(x), \ldots, \varphi_{\mathcal{N}}(x)\right)=-\left(\kappa_{1}^{N_{b}}, \ldots, \kappa_{\mathcal{N}}^{N_{b}}\right) f(x) e^{\ell x} A \\
& \left(\psi_{1}(x), \ldots, \psi_{\mathcal{N}}(x)\right)^{\mathrm{T}}=\left(e^{-\ell x}+e^{-\ell x} A f(x)\right)\left(\kappa_{1}^{N_{a}}, \ldots, \kappa_{\mathcal{N}}^{N_{a}}\right)^{\mathrm{T}} \\
& u(x)=-2\left(\kappa_{1}^{N_{b}}, \ldots, \kappa_{\mathcal{N}}^{N_{b}}\right) f_{x_{1}}(x)\left(\kappa_{1}^{N_{a}}, \ldots, \kappa_{\mathcal{N}}^{N_{a}}\right)^{\mathrm{T}}
\end{aligned}
$$

By means of the exact formulas for time derivatives of $f(x)$ we have

$$
\partial_{x_{m}} f(x)=-f(x) \kappa^{m}-f(x) A \kappa^{m} f(x), \quad \kappa=\operatorname{diag}\left\{\kappa_{1}, \ldots, \kappa_{\mathcal{N}}\right\}
$$

Analyticity properties of the Cauchy-Jost kernel enables to write:

$$
\begin{gathered}
\oint_{C} \frac{d \lambda^{\prime \prime}}{2 \pi i A\left(\lambda^{\prime \prime}\right)} F\left(x, \lambda, \lambda^{\prime \prime}\right) F\left(y, \lambda^{\prime \prime}, \lambda^{\prime}\right)=F\left(y, \lambda, \lambda^{\prime}\right)-F\left(x, \lambda, \lambda^{\prime}\right) \\
\partial_{x_{k}} F\left(x, \lambda, \lambda^{\prime}\right)=-\oint_{C} \frac{d \lambda^{\prime \prime}}{2 \pi i A\left(\lambda^{\prime \prime}\right)} F\left(x, \lambda, \lambda^{\prime \prime}\right) \lambda^{\prime \prime k} F\left(x, \lambda^{\prime \prime}, \lambda^{\prime}\right), \quad k=0,1, \ldots
\end{gathered}
$$

Darboux transformation: $N_{a} \rightarrow N_{a}+1, N_{b} \rightarrow N_{b}$

$$
\widetilde{F}\left(x, \lambda, \lambda^{\prime}\right)=\left(\lambda-\kappa_{\mathcal{N}+1}\right)\left[F\left(x, \lambda, \lambda^{\prime}\right)-\frac{F\left(x, \lambda, \kappa_{\mathcal{N}+1}\right) \sum_{l=1}^{\mathcal{N}} v_{l} F\left(x, \kappa_{l}, \lambda^{\prime}\right)}{\sum_{l=1}^{\mathcal{N}} v_{l} F\left(x, \kappa_{l}, \kappa_{\mathcal{N}+1}\right)+1}\right]
$$

Correspondingly, this solution is parametrized by the matrices

$$
\widetilde{\mathcal{D}}=\binom{\mathcal{D}}{v A \mathcal{D}}, \quad \widetilde{\mathcal{D}}^{\prime}=\left(\begin{array}{cc}
& 0 \\
\mathcal{D}^{\prime} & \vdots \\
& 0 \\
-v A & 1
\end{array}\right), \quad v=\left(v_{1}, \ldots, v_{\mathcal{N}}\right)
$$

New tau-function is given as

$$
\widetilde{\tau}(x)=\tau(x)\left(\sum_{l} v_{l} F\left(x, \kappa_{l}, \kappa_{\mathcal{N}+1}\right)+1\right)
$$

Darboux transformation: $N_{a} \rightarrow N_{a}, N_{b} \rightarrow N_{b}+1$

$$
\widetilde{F}\left(x, \lambda, \lambda^{\prime}\right)=\left(\lambda^{\prime}-\kappa_{\mathcal{N}+1}\right)\left[F\left(x, \lambda, \lambda^{\prime}\right)-\frac{\sum_{l=1}^{\mathcal{N}} v_{l} F\left(x, \lambda, \kappa_{l}\right) F\left(x, \kappa_{\mathcal{N}+1}, \lambda^{\prime}\right)}{\sum_{l=1}^{\mathcal{N}} v_{l} F\left(x, \kappa_{\mathcal{N}+1}, \kappa_{l}\right)+1}\right]
$$

Correspondingly, this solution is parametrized by the matrices

$$
\begin{aligned}
\widetilde{\mathcal{D}} & =\left(\begin{array}{cc}
\mathcal{D}, & v \\
0, & 1
\end{array}\right), \\
\widetilde{\mathcal{D}}^{\prime} & =\left(\mathcal{D}^{\prime},-\mathcal{D}^{\prime} v\right), \\
v & =\left(v_{1}, \ldots, v_{\mathcal{N}}\right)^{\mathrm{T}} .
\end{aligned}
$$

