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Multisoliton solutions of the KPII equation: (ut − 6uux1 + ux1x1x1)x1 = −3ux2x2
are known to be parametrized by means of totally nonnegative matrices

Notation. Lax operator

L(x, ∂x) = −∂x2 + ∂2x1 − u(x)

Jost solutions of L and its dual L′:

Lϕ(x, λ) = 0, L′ ψ(x, λ) = 0, λ ∈ C

are normalized by condition

lim
λ→∞

e−ℓ(λ)x ϕ(x, λ) = lim
λ→∞

eℓ(λ)xψ(x, λ) = 1

where

ℓ(λ)x = λx1 + λ2 x2 + λ3 x3 + . . .



Cauchy–Jost function (Cauchy–Baker–Akhiezer kernel, see Grinevich–Orlov, 1997)

is defined as

F (x, λ, λ′) =

x1∫

(λ−λ′)Re∞

dy1ψ(y, λ)ϕ(y, λ
′), yi = xi, i ≥ 2

where factor (λ−λ′)Re in the limit of the integral denotes sign of infinity. Just by

definition we have that F has pole with unity residual at λ′ = λ

F (x, λ, λ′) =
1

λ′−λ
+O(1), λ′ ∼ λ

and obey asymptotic relations

lim
λ′→∞

e−ℓ(λ
′)x λ′ F (x, λ, λ′) = ψ(x, λ), lim

λ→∞
eℓ(λ)xλF (x, λ, λ′) = −ϕ(x, λ′)

In the case where Hirota bilinear identity is valid we have that
∮

C

d λ′′

2πi
F (x, λ, λ′′)F (y, λ′′, λ′) = F (y, λ, λ′)− F (x, λ, λ′)

for λ′ and λ inside the contour C.



Cauchy–Jost function (Cauchy–Baker–Akhiezer kernel, see Grinevich–Orlov, 1997)

is defined as

F (x, λ, λ′) =

x1∫

(λ−λ′)Re∞

dy1ψ(y, λ)ϕ(y, λ
′), yi = xi, i ≥ 2

where factor (λ−λ′)Re in the limit of the integral denotes sign of infinity. Just by

definition we have that F has pole with unity residual at λ′ = λ

F (x, λ, λ′) =
1

λ′−λ
+O(1), λ′ ∼ λ

and obey asymptotic relations

lim
λ′→∞

e−ℓ(λ
′)x λ′ F (x, λ, λ′) = ψ(x, λ), lim

λ→∞
eℓ(λ)xλF (x, λ, λ′) = −ϕ(x, λ′)

In the case where Hirota bilinear identity is valid we have that
∮

C

d λ′′

2πi
F (x, λ, λ′′)F (y, λ′′, λ′) = F (y, λ, λ′)− F (x, λ, λ′)

for λ′ and λ inside the contour C. In solitonic case we prove also that

∂xkF (x, λ, λ
′) = −

∮

C

d λ′′

2πi
F (x, λ, λ′′)λ′′

k
F (x, λ′′, λ′), k = 0, 1, . . .



(Na, Nb)-soliton solutions are given in terms of the tau-function:

u(x) = −2∂2x1 log τ (x) ≡ −2∂2x1 log τ
′(x)

i.e., in terms of determinants

τ (x) = det
(
V eℓxD

)
, τ ′(x) = det

(
D ′ e−ℓxγ V ′

)
, τ (x) = const

( N∏

n=1

eℓnx
)
τ ′(x)

By means of the Binet–Cauchy formula:

τ (x) =
∑

1≤n1,...<nNb
≤N

D({ni})V({ni})

Nb∏

l=1

eℓnlx

where D({ni}), V({ni}) are maximal minors of matrices D and V .



Here Na, Nb ≥ 1, N = Na + Nb, N ≥ 2. N real parameters: κ1 < κ2 < . . . <

κN , Let ℓ(λ)x = λx1 + λ2 x2 + . . ., ℓnx = κnx1 + κ2nx2 + . . . and

N ×N -matrix : eℓx = diag{eℓnx}Nn=1

real constant N ×Nb-matrixD, Na ×N -matrixD′, D ′D = 0

Two incomplete Vandermonde matrices:

V =




1 . . . 1

κ1 . . . κN
... ...

κ
Nb−1
1 . . . κ

Nb−1
N


 , V ′ =




1 . . . κNa−1
1

... ...

1 . . . κNa−1
N


 ,

V A−1 V ′ = 0, A = diag{an}
N
n=1, an =

N∏

n′=1
n′ 6=n

(κn − κn′), an = A(κn)

A(λ) =

N∏

n=1

(λ−κn),



Jost solutions are renormalized here in order to get

e−ℓ(λ)x ϕ(x, λ) polynomial in λ: e−ℓ(λ)x ϕ(x, λ) = λNb + . . .

eℓ(λ)xψ(x, λ) polynomial in λ: eℓ(λ)xψ(x, λ) = λNa + . . .

Discrete values of the Jost solutions:

ϕn(x) = ϕ(x, κn), ψn(x) = ψ(x, κn), n = 1, . . . ,N .

obey (
ϕ1(x), . . . , ϕN (x)

)
D = 0, D ′

(
ψ1(x), . . . , ψN (x)

)T
= 0

Conditions of analyticity imposed on the Jost solutions are equivalent to relations
(
ϕ1(x), . . . , ϕN (x)

)
e−ℓxA−1 V ′ =

(
0, . . . , 0, 1︸ ︷︷ ︸

Na

)
,

VA−1eℓx
(
ψ1(x), . . . , ψN (x)

)T
=
(
0, . . . , 0, 1︸ ︷︷ ︸

Nb

)T
.

that are defining the Jost solutions themselves.



Cauchy–Jost function.

F (x, λ, λ′) =

x1∫

(λ−λ′)Re∞

dy1ψ(y, λ)ϕ(y, λ
′), y2 = x2, . . .

This function obeys

Fx1(x, λ, λ
′) = ψ(x, λ)ϕ(x, λ′),

Fx2(x, λ, λ
′) = ψ(x, λ)ϕx1(x, λ

′)− ψx1(x, λ)ϕ(x, λ
′)

F (x, λ, λ′) =
A(λ)

λ′−λ
+O(1), λ′ ∼ λ,

e(ℓ(λ)−ℓ(λ
′))xF (x, λ, λ′) ≡

x1∫

(λ−λ′)Re∞

dy1e
(λ−λ′)(x1−y1)

(
eℓ(λ)yψ(y, λ)e−ℓ(λ

′)y ϕ(y, λ′)

)

e(ℓ(λ)−ℓ(λ
′))xF (x, λ, λ′) =

A(λ′)

λ′−λ
+ A(λ)A(λ′)

N∑

m,n=1

fmn(x)

(λ−κm)(λ
′−κn)



Asymptotics for large λ and λ′:

e(ℓ(λ)−ℓ(λ
′))xF (x, λ, λ′) =

λNa−1 λ′
Nb−1

λ′−λ

(
λ−

1

2

N∑

m=1

κm

)(
λ′−

1

2

N∑

m=1

κm

)
−

−
1

2

∫
u(x)dx1 + . . .

Values at points κ’s:’

e(ℓm−ℓ(λ′))xF (x, κm, λ
′) =

A(λ′)

λ′−κm
+ amA(λ

′)
N∑

n=1

fmn(x)

λ′−κn

e(ℓ(λ)−ℓn)xF (x, λ, κn) = A(λ)an

N∑

m=1

fmn(x)

λ′−κn

are polynomials with the leading behavior:

e(ℓm−ℓ(λ′))xF (x, κm, λ
′) = λ′

Nb−1
ψ(x, κm) + . . . ,

e(ℓ(λ)−ℓn)xF (x, λ, κn) = −λNa−1ψ(x, κn) + . . .



Finally,

lim
λ′→κn

e(ℓm−ℓ(λ′))xF (x, κm, λ
′) = amδmn + amfmn(x)an

lim
λ→κm

e(ℓ(λ)−ℓn)xF (x, λ, κn) = amfmn(x)an

Matrix f(x) obeys properties

f(x)eℓxAD = 0, f(x)V ′ = −A−1e−ℓx V ′

that are defining this matrix:

f(x) = −A−1 V ′(D′ e−ℓxA−1 V ′)−1D′ e−ℓx

f(x)A = −I + eℓxD(V eℓxD)−1 V

This proves that −f(x)A is the orthogonal projector: f(x)Af(x) = −f(x). All

standard objects of the the theory can be given in terms of the matrix f(x):
(
ϕ1(x), . . . , ϕN (x)

)
= −

(
κ
Nb

1 , . . . , κ
Nb

N

)
f(x)eℓxA,

(
ψ1(x), . . . , ψN (x)

)T
= (e−ℓx + e−ℓxAf(x))

(
κNa

1 , . . . , κNa

N

)T
,

u(x) = −2
(
κ
Nb

1 , . . . , κ
Nb

N

)
fx1(x)

(
κNa

1 , . . . , κNa

N

)T

By means of the exact formulas for time derivatives of f(x) we have

∂xmf(x) = −f(x)κm − f(x)Aκmf(x), κ = diag{κ1, . . . , κN}



Analyticity properties of the Cauchy–Jost kernel enables to write:
∮

C

d λ′′

2πiA(λ′′)
F (x, λ, λ′′)F (y, λ′′, λ′) = F (y, λ, λ′)− F (x, λ, λ′)

∂xkF (x, λ, λ
′) = −

∮

C

d λ′′

2πiA(λ′′)
F (x, λ, λ′′)λ′′

k
F (x, λ′′, λ′), k = 0, 1, . . .



Darboux transformation: Na → Na + 1, Nb → Nb

F̃ (x, λ, λ′) = (λ−κN +1)

[
F (x, λ, λ′)−

F (x, λ, κN +1)
∑N

l=1 vlF (x, κl, λ
′)

∑N
l=1 vlF (x, κl, κN +1) + 1

]

Correspondingly, this solution is parametrized by the matrices

D̃ =

(
D

vAD

)
, D̃

′
=




0

D′ ...

0

−vA 1


 , v = (v1, . . . , vN )

New tau-function is given as

τ̃ (x) = τ (x)
(∑

l

vlF (x, κl, κN +1) + 1
)



Darboux transformation: Na → Na, Nb → Nb + 1

F̃ (x, λ, λ′) = (λ′−κN +1)

[
F (x, λ, λ′)−

∑N
l=1 vlF (x, λ, κl)F (x, κN +1, λ

′)
∑N

l=1 vlF (x, κN +1, κl) + 1

]

Correspondingly, this solution is parametrized by the matrices

D̃ =

(
D, v
0, 1

)
,

D̃
′
=

(
D′,−D′ v

)
,

v = (v1, . . . , vN )
T.


