Stability of autoresonance under persistent perturbation

Leonid Kalyakin¹

¹Institute of mathematics RAS, Ufa, RUSSIA

SCT-14, August, 04-08, 2014, Chernogolovka, Russia
Outline

1. Statement of the problem
2. Origin of the problem
3. Different approaches
4. Main result
5. Conclusion
6. Novelty
Summary

A dynamical system under white noise perturbation is considered.
A dynamical system under white noise perturbation is considered.

Theorem of stability of equilibrium is proved.
Summary

A dynamical system under white noise perturbation is considered.

Theorem of stability of equilibrium is proved.

The method of parabolic equation is used.
Summary

A dynamical system under white noise perturbation is considered.

Theorem of stability of equilibrium is proved.

The method of parabolic equation is used.

An appropriate barrier function for the Kolmogorov’s equation is the main mathematical achievement.
Summary

A dynamical system under white noise perturbation is considered.

Theorem of stability of equilibrium is proved.

The method of parabolic equation is used.

An appropriate barrier function for the Kolmogorov’s equation is the main mathematical achievement.

The result is applied to prove the stability of the autoresonance phenomenon.
Statement of problem

Unperturbed system is ODEq

\[\frac{d\mathbf{y}}{dT} = \mathbf{a}(\mathbf{y}, T), \quad \mathbf{y} \in \mathbb{R}^n, \quad T > 0. \] (1)
Statement of problem

Unperturbed system is ODEq

\[\frac{dy}{dT} = a(y, T), \quad y \in \mathbb{R}^n, \quad T > 0. \]

(1)

The point \(y = 0 \) is equilibrium: \(a(0, T) \equiv 0 \).
Statement of problem

Unperturbed system is ODEq

\[\frac{dy}{dT} = a(y, T), \quad y \in \mathbb{R}^n, \quad T > 0. \] \hspace{1cm} (1)

The point \(y = 0 \) is equilibrium: \(a(0, T) \equiv 0 \).

Perturbed system is a stochastic Ito equation

\[dy = a(y, T)dt + \mu B(y, T)dw(T), \quad T > 0; \quad y|_{T=0} = x. \] \hspace{1cm} (2)
Statement of problem

Unperturbed system is ODEq

\[\frac{dy}{dT} = a(y, T), \quad y \in \mathbb{R}^n, \quad T > 0. \] (1)

The point \(y = 0 \) is equilibrium: \(a(0, T) = 0 \).

Perturbed system is a stochastic Ito equation

\[dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \] (2)

\(w(T) \) is a standard Winer process,
Statement of problem

Unperturbed system is ODEq

\[
\frac{dy}{dT} = a(y, T), \quad y \in \mathbb{R}^n, \quad T > 0. \tag{1}
\]

The point \(y = 0 \) is equilibrium: \(a(0, T) \equiv 0 \).

Perturbed system is a stochastic Ito equation

\[
dy = a(y, T)\,dT + \mu B(y, T)\,dw(T), \quad T > 0; \quad y|_{T=0} = x. \tag{2}
\]

\(w(T) \) is a standard Winer process, \(B(y, T) \) is a matrix \(n \times n \),
Statement of problem

Unperturbed system is ODEq

\[\frac{dy}{dT} = a(y, T), \quad y \in \mathbb{R}^n, \quad T > 0. \] \hspace{1cm} (1)

The point \(y = 0 \) is equilibrium: \(a(0, T) \equiv 0 \).

Perturbed system is a stochastic Ito equation

\[dy = a(y, T) dT + \mu B(y, T) \, dw(T), \quad T > 0; \quad y|_{T=0} = x. \] \hspace{1cm} (2)

\(w(T) \) is a standard Winer process, \(B(y, T) \) is a matrix \(n \times n \), \(B(0, T) \neq 0 \).
Statement of problem

Unperturbed system is ODEq

$$\frac{dy}{dT} = a(y, T), \quad y \in \mathbb{R}^n, \quad T > 0. \quad (1)$$

The point $y = 0$ is equilibrium: $a(0, T) \equiv 0$.

Perturbed system is a stochastic Ito equation

$$dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \quad (2)$$

$w(T)$ is a standard Wiener process, $B(y, T)$ is a matrix $n \times n$, $B(0, T) \neq 0$. The solution $y = y_\mu(T; x)$ is a random process.
Statement of problem

Unperturbed system is ODEq

\[
\frac{dy}{dT} = a(y, T), \quad y \in \mathbb{R}^n, \quad T > 0.
\] (1)

The point \(y = 0 \) is equilibrium: \(a(0, T) \equiv 0 \).

Perturbed system is a stochastic Ito equation

\[
dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x.
\] (2)

\(w(T) \) is a standard Wiener process, \(B(y, T) \) is a matrix \(n \times n \), \(B(0, T) \neq 0 \). The solution \(y = y_\mu(T; x) \) is a random process.

The problem of stability

Does the trajectory \(y = y_\mu(T; x) \) remain near equilibrium, if the perturbation \(\mu, x \) are small and the matrix is in a ball \(||B|| < M \)?
Statement of problem

Answer

There is not any Lyapunov’s type stability.
Statement of problem

Answer
There is not any Lyapunov’s type stability.

Almost all trajectories drift out the equilibrium.
Statement of problem

Answer

There is not any Lyapunov’s type stability.

Almost all trajectories drift out the equilibrium.

How to understand the stability under white noise?
Statement of problem

Answer
There is not any Lyapunov’s type stability.

Almost all trajectories drift out the equilibrium.

How to understand the stability under white noise?

There are some Khasminskii’s and Freidlin–Wentzell’s results concerning either dissipative or autonomous systems.
References

Khasmiskii R.
Khasmiskii R.

concerns either the dissipative systems or a special perturbation $B(0, T) \equiv 0$.
Р. Э. Хасьминский

Устойчивость систем дифференциальных уравнений при случайных возмущениях их параметров
References

Freidlin, M.I., Wentzell, A.D.
References

Freidlin, M.I., Wentzell, A.D.

cconcerns the autonomous systems.
The results are not applicable to some interesting problems.
The results are not applicable to some interesting problems.

What the problems?
Example

Autoresonance perturbation of the pendulum

\[\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot \cos(t - \alpha t^2), \]
Example

Autoresonance perturbation of the pendulum

\[
\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot \cos(t - \alpha t^2), \quad 0 < \varepsilon \ll 1,
\]
Example

Autoresonance perturbation of the pendulum

\[\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot \cos(t - \alpha t^2), \quad 0 < \varepsilon \ll 1, \quad \alpha \approx \varepsilon^{4/3}. \]
Example

Autoresonance perturbation of the pendulum

\[\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot \cos(t - \alpha t^2), \quad 0 < \varepsilon \ll 1, \quad \alpha \approx \varepsilon^{4/3}. \]
The problem: Is the capture into resonance stable?

An anzatz on the initial stage:

\[x(T; \varepsilon) \approx \varepsilon^{1/3} \rho(t) \cos(t + \Psi(t)) \] as \(t = \varepsilon^{2/3}T \).

Autoresonance solutions:

\[\rho(t) \to \infty, \quad t \to \infty. \]

Example

\[
\frac{d^2 x}{dT^2} + \sin x = \varepsilon \cdot \cos(T - \alpha T^2), \quad 0 < \varepsilon \ll 1, \quad \alpha \approx \varepsilon^{4/3}.
\]
Example

\[\frac{d^2 x}{dT^2} + \sin x = \varepsilon \cdot \cos(T - \alpha T^2), \quad 0 < \varepsilon \ll 1, \quad \alpha \approx \varepsilon^{4/3}. \]

The problem: Is stable the capture into resonance?
The problem: Is stable the capture into resonance?

\[\frac{d^2 x}{dT^2} + \sin x = \varepsilon \cdot \cos(T - \alpha T^2), \quad 0 < \varepsilon \ll 1, \quad \alpha \approx \varepsilon^{4/3}. \]
Example

\[
\frac{d^2 x}{dT^2} + \sin x = \varepsilon \cdot \cos(T - \alpha T^2), \quad 0 < \varepsilon \ll 1, \quad \alpha \approx \varepsilon^{4/3}.
\]

The problem: Is stable the capture into resonance?

Anzatz on the initial stage

\[
x(T; \varepsilon) \approx \varepsilon^{1/3} \rho(t) \cos(t + \Psi(t)) \quad \text{as} \quad t = \varepsilon^{2/3} T
\]
The problem: Is stable the capture into resonance?

Autoresonance solutions:

\[\rho(t) \to \infty, \ t \to \infty. \]
Applications

Model systems of autoresonance:
Model systems of autoresonance:

Main autoresonance equations

\[\frac{d\rho}{dt} = \sin \psi, \quad \rho \left[\frac{d\psi}{dt} - \rho^2 + \lambda t \right] = \cos \psi. \]
Applications

Model systems of autoresonance:

Main autoresonance equations

\[\frac{d\rho}{dt} = \sin \Psi, \quad \rho \left[\frac{d\Psi}{dt} - \rho^2 + \lambda t \right] = \cos \Psi. \]

Perturbed pendulum

\[\frac{d\rho}{dt} = \sin \Psi, \quad \frac{d\Psi}{dt} = \rho - \lambda t, \quad \lambda = \text{const} > 0. \]
Applications

Model systems of autoresonance:

Main autoresonance equations

\[
\frac{d\rho}{dt} = \sin \psi, \quad \rho \left[\frac{d\psi}{dt} - \rho^2 + \lambda t \right] = \cos \psi.
\]

Perturbed pendulum

\[
\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho - \lambda t, \quad \lambda = \text{const} > 0.
\]

Equations of degenerate resonance

\[
\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho^2 - \lambda t.
\]
Applications

Model systems of autoresonance:

Main autoresonance equations

\[
\frac{d\rho}{dt} = \sin \psi, \quad \rho \left[\frac{d\psi}{dt} - \rho^2 + \lambda t \right] = \cos \psi.
\]

Perturbed pendulum

\[
\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho - \lambda t, \quad \lambda = \text{const} > 0.
\]

Equations of degenerate resonance

\[
\frac{d\rho}{dt} = \sin \psi, \quad \frac{d\psi}{dt} = \rho^2 - \lambda t.
\]

And so on....
Statement of the autoresonance problem

Specific of the autoresonance equations

The equations are nonlinear and nonautonomous. Almost all systems are nonintegrable. There are not any small parameter in the equations. The main object is an autoresonance solution with increasing amplitude \(\rho(t) \to \infty \) as \(t \to \infty \). There are some solutions of that type. Problem Are stable these solutions with respect to random perturbations?
Statement of the autoresonance problem

Specific of the autoresonance equations

The equations are nonlinear and nonautonomous.
Statement of the autoresonance problem

Specific of the autoresonance equations

The equations are nonlinear and nonautonomous. Almost all systems are nonintegrable.
Statement of the autoresonance problem

<table>
<thead>
<tr>
<th>Specific of the autoresonance equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The equations are nonlinear and nonautonomous.</td>
</tr>
<tr>
<td>Almost all systems are nonintegrable.</td>
</tr>
<tr>
<td>There are not any small parameter in the equations.</td>
</tr>
</tbody>
</table>
Statement of the autoresonance problem

Specific of the autoresonance equations

The equations are nonlinear and nonautonomous. Almost all systems are nonintegrable. There are not any small parameter in the equations.

The main object is an autoresonance solution with increasing amplitude $\rho(t) \to \infty$ as $t \to \infty$.
Statement of the autoresonance problem

Specific of the autoresonance equations

The equations are nonlinear and nonautonomous. Almost all systems are nonintegrable. There are not any small parameter in the equations.

The main object is an autoresonance solution

with increasing amplitude $\rho(t) \to \infty$ as $t \to \infty$.

There are some solutions of that type.
Statement of the autoresonance problem

Specific of the autoresonance equations
The equations are nonlinear and nonautonomous. Almost all systems are nonintegrable. There are not any small parameter in the equations.

The main object is an autoresonance solution
with increasing amplitude $\rho(t) \to \infty$ as $t \to \infty$.

There are some solutions of that type.

Problem
Are stable these solutions with respect to random perturbations?
Initial stage of autoresonance

Autoresonance solutions
Statement of the autoresonance problem

Specific of the autoresonance systems
Statement of the autoresonance problem

Specific of the autoresonance systems

There are different solutions with increasing and bounded amplitude as well.
Specific of the autoresonance systems

There are different solutions with increasing and bounded amplitude as well.

Specific of the reduced systems
Statement of the autoresonance problem

Specific of the autoresonance systems
There are different solutions with increasing and bounded amplitude as well.

Specific of the reduced systems
There are different trajectories approaching to the equilibrium and going to infinity as well.
Statement of the autoresonance problem

Specific of the autoresonance systems
There are different solutions with increasing and bounded amplitude as well.

Specific of the reduced systems
There are different trajectories approaching to the equilibrium and going to infinity as well.

The autoresonance systems are not dissipative
The well known Khasimskii’s results are not applicable.
Statement of the autoresonance problem

Specific of the autoresonance systems
There are different solutions with increasing and bounded amplitude as well.

Specific of the reduced systems
There are different trajectories approaching to the equilibrium and going to infinity as well.

The autoresonance systems are not dissipative
The well known Khasminskii’s results are not applicable.

The autoresonance systems are not autonomous
The well known Freidlin’s results are not applicable.
Deterministic stability

Perturbed system

\[\frac{dy}{dT} = a(y, T) + \mu B(y, T), \quad T > 0; \quad y|_{T=0} = x. \]
Deterministic stability

Perturbed system

\[\frac{dy}{dT} = a(y, T) + \mu B(y, T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability
Deterministic stability

Perturbed system

\[
\frac{dy}{dT} = a(y, T) + \mu B(y, T), \quad T > 0; \quad y|_{T=0} = x.
\]

Measure of stability

is the square perturbed solution

\[
[(y_\mu(T; x))^2] = U_\mu(x, T)
\]
Deterministic stability

Perturbed system

\[
\frac{dy}{dT} = a(y, T) + \mu B(y, T), \quad T > 0; \quad y\big|_{T=0} = x.
\]

Measure of stability

is the square perturbed solution

\[
[(y_\mu(T; x))^2] = U_\mu(x, T)
\]

Stability uniform for \(\forall \|B(y, T)\| \leq M < \infty \)
Deterministic stability

Perturbed system

\[\frac{dy}{dT} = a(y, T) + \mu B(y, T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability

is the square perturbed solution

\[[(y_\mu(T; x))^2] = U_\mu(x, T) \]

Stability uniform for \(\forall \|B(y, T)\| \leq M < \infty \)

\[\forall \varepsilon > 0 \exists \delta, \Delta : \forall |x| < \delta, |\mu| < \Delta \Rightarrow \sup_{T>0} \left(y_\mu(T; x)^2\right) < \varepsilon. \]
Deterministic stability

<table>
<thead>
<tr>
<th>Theorem (Malkin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If there exists a local Lyapunov function then the equilibrium is stable with respect to persistent perturbations. The result is right for some random perturbations, but not for the white noise (Krasovskii).</td>
</tr>
</tbody>
</table>
Deterministic stability

<table>
<thead>
<tr>
<th>Theorem (Malkin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If there exists a local Lyapunov function then the equilibrium is stable with respect to persistent perturbations.</td>
</tr>
</tbody>
</table>
Deterministic stability

Theorem (Malkin)

If there exists a local Lyapunov function then the equilibrium is stable with respect to persistent perturbations.

The result is right for some random perturbations, but not for the white noise (Krasovskii).
ТЕОРИЯ УСТОЙЧИВОСТИ ДВИЖЕНИЯ

ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ
МОСКВА 1952 ЛЕНИНГРАД
<table>
<thead>
<tr>
<th>Statement of the problem</th>
<th>Origin of the problem</th>
<th>Different approaches</th>
<th>Main result</th>
<th>Conclusion</th>
<th>Novelty</th>
</tr>
</thead>
</table>

П. Н. КРАСОВСКИЙ

НЕКОТОРЫЕ ЗАДАЧИ ТЕОРИИ УСТОЙЧИВОСТИ ДВИЖЕНИЯ

ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ
МОСКВА 1959
Definitions of stochastic stability

Perturbed system is the Itô’s equation

\[dy = a(y, T)\,dT + \mu B(y, T)\,dw(T), \quad T > 0; \quad y|_{T=0} = x. \]
Definitions of stochastic stability

Perturbed system is the Ito’s equation

\[dy = a(y, T)\,dT + \mu B(y, T)\,dw(T), \quad T > 0; \quad y|_{T=0} = x. \]
Definitions of stochastic stability

Perturbed system is the Ito’s equation

\[dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability

is expectation of the square perturbed solution

\[E[(y_\mu(T; x))^2] = U_\mu(x, T) \]
Definitions of stochastic stability

Perturbed system is the Itô’s equation

\[dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y\big|_{T=0} = x. \]

Measure of stability

is expectation of the square perturbed solution

\[\mathbb{E}[(y_\mu(T; x))^2] = U_\mu(x, T) \]

Strong stability uniform for \(\forall \|B(y, T)\| \leq M < \infty \).
Definitions of stochastic stability

Perturbed system is the Itô’s equation
\[dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability
is expectation of the square perturbed solution
\[\mathbb{E}[(y_\mu(T; x))^2] = U_\mu(x, T) \]

Strong stability uniform for \(\forall \|B(y, T)\| \leq M < \infty \)
\[\forall \varepsilon > 0 \exists \delta, \Delta : \forall |x| < \delta, |\mu| < \Delta \Rightarrow \mathbb{E}[\sup_{T>0} (y_\mu(T; x))^2] < \varepsilon. \]
Definitions of stochastic stability

Perturbed system is the Ito’s equation

\[dy = a(y, T) dT + \mu B(y, T) \, dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability

is expectation of the square perturbed solution

\[\mathbb{E}\left[(y_{\mu}(T; x))^2\right] = U_{\mu}(x, T) \]

Strong stability uniform for \(\forall \|B(y, T)\| \leq M < \infty \)

\[\forall \varepsilon > 0 \exists \delta, \Delta : \forall |x| < \delta, |\mu| < \Delta \implies \mathbb{E}\left[\sup_{T>0} (y_{\mu}(T; x))^2\right] < \varepsilon. \]

Strong stability under white noise can not be at all.
Definitions of stochastic stability

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) \, dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability is expectation

\[\mathbb{E}[(y_\mu(T; x))^2] = U_\mu(x, T) \]

Weak stability uniform for \(\forall \|B(y, T)\| \leq M < \infty \)
Definitions of stochastic stability

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) \, dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability is expectation

\[\mathbb{E}[\left(y_{\mu}(T; x)\right)^2] = U_{\mu}(x, T) \]

Weak stability uniform for \(\forall \|B(y, T)\| \leq M < \infty \)

\[\forall \varepsilon > 0 \exists \delta, \Delta : \forall |x| < \delta, |\mu| < \Delta \Rightarrow \sup_{T>0} \mathbb{E}\left[\left(y_{\mu}(T; x)\right)^2\right] < \varepsilon. \]
Definitions of stochastic stability

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability is expectation

\[\mathbb{E}[(y_{\mu}(T; x))^2] = U_{\mu}(x, T) \]

Weak stability uniform for \(\forall \|B(y, T)\| \leq M < \infty \)

\[\forall \varepsilon > 0 \exists \delta, \Delta : \forall |x| < \delta, |\mu| < \Delta \Rightarrow \sup_{T>0} \mathbb{E}[(y_{\mu}(T; x))^2] < \varepsilon. \]

Weak stability under white noise may be, if the system is dissipative (Khasminskii). It is not the autoresonance case.
Definitions of stochastic stability

Perturbed system

\[d\mathbf{y} = a(\mathbf{y}, T)dT + \mu B(\mathbf{y}, T)\, dw(T), \ T > 0; \quad \mathbf{y}|_{T=0} = \mathbf{x}. \]

Measure of stability is expectation

\[\mathbb{E}[(\mathbf{y}_\mu(T; \mathbf{x}))^2] = U_\mu(\mathbf{x}, T) \]

Limited weak stability
Definitions of stochastic stability

Perturbed system

\[d\mathbf{y} = a(\mathbf{y}, T) dT + \mu B(\mathbf{y}, T) \, dw(T), \quad T > 0; \quad \mathbf{y}|_{T=0} = \mathbf{x}. \]

Measure of stability is expectation

\[\mathbb{E}[\left(\mathbf{y}_\mu(T; \mathbf{x}) \right)^2] = U_\mu(\mathbf{x}, T). \]

Limited weak stability

\[\forall \varepsilon > 0 \exists \delta, \Delta : \forall |\mathbf{x}| < \delta, |\mu| < \Delta \Rightarrow \sup_{0 < T < \mu^{-2}} \mathbb{E}[\left(\mathbf{y}_\mu(T; \mathbf{x}) \right)^2] < \varepsilon. \]
Definitions of stochastic stability

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) \, dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability is expectation

\[\mathbb{E}[(y_\mu(T; x))^2] = U_\mu(x, T) \]

Limited weak stability

\[\forall \varepsilon > 0 \exists \delta, \Delta : \forall |x| < \delta, |\mu| < \Delta \Rightarrow \sup_{0 < T < \mu^{-2}} \mathbb{E}[(y_\mu(T; x))^2] < \varepsilon. \]

Limited weak stability is derived from Freidlin’s results if the system is \textit{autonomous}. It is not the autoresonance case.
Stability under given estimates

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability is expectation of perturbed solution

\[\mathbb{E}[(y_\mu(T; x))^2] = U_\mu(x, T) \]

Limited weak stability
Stability under given estimates

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability is expectation of perturbed solution

\[\mathbb{E}[(y_\mu(T; x))^2] = U_\mu(x, T) \]

Limited weak stability (Krasovskii) with given estimates:

\[\exists \delta = \delta(\varepsilon), \quad \Delta = \Delta(\varepsilon) \]
Stability under given estimates

Perturbed system

\[dy = a(y, T)dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability is expectation of perturbed solution

\[E[(y_\mu(T; x))^2] = U_\mu(x, T) \]

Limited weak stability (Krasovskii) with given estimates:

\[\exists \delta = \delta(\varepsilon), \Delta = \Delta(\varepsilon) \]

\[\forall \varepsilon > 0, \forall |x| < \delta(\varepsilon), |\mu| < \Delta(\varepsilon) \Rightarrow \sup_{0 < T < \mu^{-2}} E[(y_\mu(T; x))^2] < \varepsilon. \]
Stability under given estimates

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Measure of stability is expectation of perturbed solution

\[\mathbb{E}[(y_\mu(T; x))^2] = U_\mu(x, T) \]

Limited weak stability (Krasovskii) with given estimates:

\[\exists \delta = \delta(\varepsilon), \Delta = \Delta(\varepsilon) \]

\[\forall \varepsilon > 0, \forall |x| < \delta(\varepsilon), |\mu| < \Delta(\varepsilon) \Rightarrow \sup_{0 < T < \mu^{-2}} \mathbb{E}[(y_\mu(T; x))^2] < \varepsilon. \]

The given estimates are more appropriate at physics, especially at the autoresonance phenomenon. It is not the Freidlin’s case.
Perturbed system

\[d\mathbf{y} = a(\mathbf{y}, T) dT + \mu B(\mathbf{y}, T) d\mathbf{w}(T), \quad T > 0; \quad \mathbf{y}|_{T=0} = \mathbf{x}. \]
Perturbed system

\[dy = a(y, T) \,dT + \mu B(y, T) \,dw(T), \quad T > 0; \quad y|_{T=0} = x. \]
Main result

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Theorem

Let unperturbed deterministic system has a local Lyapunov function \(U(y, T) \) with the properties

\[\partial_T U + a(y, T) \partial_y U \leq -\gamma U; \quad U(y, T) = O(|y|^2), \quad y \to 0; \]
Main result

Perturbed system

$$dy = a(y, T)dT + \mu B(y, T)dw(T), \quad T > 0; \quad y|_{T=0} = x.$$

Theorem

Let unperturbed deterministic system has a local Lyapunov function $U(y, T)$ with the properties

$$\partial_T U + a(y, T)\partial_y U \leq -\gamma U; \quad U(y, T) = O(|y|^2), \quad y \to 0;$$

$$|a(y, T)|, \|B(y, T)\|, \leq M \cdot (1 + |y|), \quad \forall y \in \mathbb{R}^n, \quad T > 0; \quad \gamma, M = \text{const} > 0.$$
Main result

Perturbed system

\[dy = a(y, T)\,dT + \mu B(y, T)\,dw(T), \quad T > 0; \quad y\big|_{T=0} = x. \]

Theorem

Let unperturbed deterministic system has a local Lyapunov function \(U(y, T) \) with the properties

\[\partial_T U + a(y, T)\partial_y U \leq -\gamma U; \quad U(y, T) = O(|y|^2), \quad y \to 0; \]

\[|a(y, T)|, \|B(y, T)\| \leq M \cdot (1 + |y|), \quad \forall y \in \mathbb{R}^n, \quad T > 0; \quad \gamma, M = \text{const} > 0. \]

Then the equilibrium is limited weak stable (under white noise) with estimates:

\[\delta(\varepsilon) = \delta_M \sqrt{\varepsilon}, \quad \Delta(\varepsilon) = \Delta_M \sqrt{\varepsilon}, \quad (\delta_M, \Delta_M = \text{const}). \]
Conclussion

\[d\mathbf{y} = \mathbf{a}(\mathbf{y}, T) \, dT + \mu \mathbf{B}(\mathbf{y}, T) \, dw(T), \quad T > 0; \quad \mathbf{y}|_{T=0} = \mathbf{x}. \]
Conclusion

\[d\mathbf{y} = a(\mathbf{y}, T) dT + \mu B(\mathbf{y}, T) d\mathbf{w}(T), \quad T > 0; \quad \mathbf{y}|_{T=0} = \mathbf{x}. \]

Lyapunov function of the unperturbed system is a ground for a barrier function of the Kolmogorov’s equation.
\[d\mathbf{y} = \mathbf{a}(\mathbf{y}, T) dT + \mu \mathbf{B}(\mathbf{y}, T) \, dw(T), \quad T > 0; \quad \mathbf{y}|_{T=0} = \mathbf{x}. \]

Lyapunov function of the unperturbed system is a ground for a barrier function of the Kolmogorov’s equation.

The barrier function provides weak stability with the given estimates: \(|\mu|, |\mathbf{x}| = \mathcal{O}(\sqrt{\varepsilon})\) on a long time interval \(0 < T < \mathcal{O}(\mu^{-2})\).
\[dy = a(y, T) \, dT + \mu B(y, T) \, dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Lyapunov function of the unperturbed system is a ground for a barrier function of the Kolmogorov’s equation.

The barrier function provides weak stability with the given estimates: \(|\mu|, |x| = \mathcal{O}(\sqrt{\varepsilon})\) on a long time interval \(0 < T < \mathcal{O}(\mu^{-2})\).

There is not weak stability up to infinity \(0 < T < \infty\).
\[d\mathbf{y} = a(\mathbf{y}, T)dT + \mu B(\mathbf{y}, T)\, dw(T), \quad T > 0; \quad \mathbf{y}|_{T=0} = \mathbf{x}. \]

Lyapunov function of the unperturbed system is a ground for a barrier function of the Kolmogorov’s equation.

The barrier function provides weak stability with the given estimates: \(|\mu|, |\mathbf{x}| = \mathcal{O}(\sqrt{\varepsilon})\) on a long time interval \(0 < T < \mathcal{O}(\mu^{-2})\).

There is not weak stability up to infinity \(0 < T < \infty\).

Open problem

Is there weak stability on a very long time interval, for example, \(0 < T < \mathcal{O}(\exp(\mu^{-2}))\)?
Example

Autoresonance perturbation of the pendulum

\[\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot \cos(t - \alpha t^2), \]
Example

Autoresonance perturbation of the pendulum

\[\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot \cos(t - \alpha t^2), \quad \alpha \approx \varepsilon^{4/3}, \quad 0 < \varepsilon \ll 1. \]
Example

Autoresonance perturbation of the pendulum

$$\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot \cos(t - \alpha t^2), \quad \alpha \approx \varepsilon^{4/3}, \quad 0 < \varepsilon \ll 1.$$
Example

Autoresonance perturbation with noise

\[\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot (1 + \mu \dot{w}(t)) \cos(t - \alpha t^2), \quad \alpha \approx \varepsilon^{4/3}, \quad 0 < \varepsilon \ll 1. \]
Example

Autoresonance perturbation with noise

\[
\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot (1 + \mu \dot{w}(t)) \cos(t - \alpha t^2), \quad \alpha \approx \varepsilon^{4/3}, \quad 0 < \varepsilon \ll 1.
\]

Stability of the autoresonance is proved under condition

\[|\mu| \leq \varepsilon^{1/6}.\]
Autoresonance perturbation with noise

\[\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot (1 + \mu \dot{w}(t)) \cos(t - \alpha t^2), \quad \alpha \approx \varepsilon^{4/3}, \quad 0 < \varepsilon \ll 1. \]

Stability of the autoresonance is proved under condition

\[|\mu| \leq \varepsilon^{1/6}. \]

Hypothesis

\[|\mu| \leq |\ln \varepsilon|? \]
Example

Autoresonance perturbation with noise

\[\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot (1 + \mu \dot{w}(t)) \cos(t - \alpha t^2), \quad \alpha \approx \varepsilon^{4/3}, \quad 0 < \varepsilon \ll 1. \]

Stability of the autoresonance is proved under condition

\[|\mu| \leq \varepsilon^{1/6}. \]

Hypothesis

\[|\mu| \leq |\ln \varepsilon|? \]

Exponential time stability is need to prove this hypothesis.
Example

Autoresonance perturbation with noise

\[
\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot (1 + \mu \dot{w}(t)) \cos(t - \alpha t^2), \quad \alpha \approx \varepsilon^{4/3}, \quad 0 < \varepsilon \ll 1.
\]

Stability of the autoresonance is proved under condition

\[|\mu| \leq \varepsilon^{1/6}.\]

Hypothesis

\[|\mu| \leq |\ln \varepsilon|?\]

Exponential time stability is need to prove this hypothesis.

Who can suggest an appropriate barrier for the Kolmogorov equation?
Example

Autoresonance perturbation with noise

\[
\frac{d^2 x}{dt^2} + \sin x = \varepsilon \cdot (1 + \mu \dot{w}(t)) \cos(t - \alpha t^2), \quad \alpha \approx \varepsilon^{4/3}, \quad 0 < \varepsilon \ll 1.
\]

Stability of the autoresonance is proved under condition

\[|\mu| \leq \varepsilon^{1/6}.
\]

Hypothesis

\[|\mu| \leq |\ln \varepsilon|?\]

Exponential time stability is need to prove this hypothesis. Who can suggest an appropriate barrier for the Kolmogorov equation?
THANK YOU FOR ATTENTION!
Novelty in technique
Novelty in technique

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \]
Novelty in technique

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) \, dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Initial problem for the Kolmogorov’s equation
Novelty in technique

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) \, dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Initial problem for the Kolmogorov’s equation

\[\partial_t u - a(x, T-t) \partial_x u - \mu^2 \sum_{i,j=1}^{n} b_{i,j}(x, t-T) \partial_{x_i} \partial_{x_j} u = 0, \]
Novelty in technique

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) dw(T), \ T > 0; \ y|_{T=0} = x. \]

Initial problem for the Kolmogorov’s equation

\[\partial_t u - a(x, T - t) \partial_x u - \mu^2 \sum_{i,j=1}^{n} b_{i,j}(x, t - T) \partial_{x_i} \partial_{x_j} u = 0, \]

\[u(x, t; T, \mu)|_{t=0} = |x|^2, \quad x \in \mathbb{R}^n, \]
Novelty in technique

Perturbed system

\[dy = a(y, T) dT + \mu B(y, T) \, dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Initial problem for the Kolmogorov’s equation

\[
\partial_t u - a(x, T-t) \partial_x u - \mu^2 \sum_{i,j=1}^n b_{i,j}(x, t-T) \partial_x^i \partial_x^j u = 0,
\]

\[u(x, t; T, \mu)|_{t=0} = |x|^2, \quad x \in \mathbb{R}^n, \quad \{b_{i,j}\} = \frac{1}{2} BB^*(x, T-t). \]
Novelty in technique

Perturbed system

\[\frac{dy}{dT} = a(y, T) dT + \mu B(y, T) dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Initial problem for the Kolmogorov’s equation

\[\partial_t u - a(x, T-t) \partial_x u - \mu^2 \sum_{i,j=1}^n b_{i,j}(x, t - T) \partial_{x_i} \partial_{x_j} u = 0, \]

\[u(x, t; T, \mu)|_{t=0} = |x|^2, \quad x \in \mathbb{R}^n, \quad \{b_{i,j}\} = \frac{1}{2} BB^*(x, T - t). \]

Connection with the random trajectories
Novelty in technique

Perturbed system
\[dy = a(y, T) dT + \mu B(y, T) d\mathbf{w}(T), \quad T > 0; \quad y|_{T=0} = \mathbf{x}. \]

Initial problem for the Kolmogorov’s equation
\[\partial_t u - a(\mathbf{x}, T - t) \partial_x u - \mu^2 \sum_{i,j=1}^{n} b_{i,j}(\mathbf{x}, t - T) \partial_{x_i} \partial_{x_j} u = 0, \]
\[u(\mathbf{x}, t; T, \mu)|_{t=0} = |\mathbf{x}|^2, \quad \mathbf{x} \in \mathbb{R}^n, \quad \{b_{i,j}\} = \frac{1}{2} \mathbf{B}\mathbf{B}^*(\mathbf{x}, T - t). \]

Connection with the random trajectories
\[\mathbb{E}[(y_\mu(T; \mathbf{x}))^2] = u(\mathbf{x}, t; T, \mu)|_{t=T}. \]
Novelty in technique

Perturbed system

\[\frac{dy}{dT} = a(y, T)dT + \mu B(y, T)dw(T), \quad T > 0; \quad y|_{T=0} = x. \]

Initial problem for the Kolmogorov’s equation

\[\begin{align*}
\partial_t u - a(x, T - t)\partial_x u - \mu^2 \sum_{i,j=1}^{n} b_{i,j}(x, t - T)\partial_{x_i}\partial_{x_j}u &= 0, \\
u(x, t; T, \mu)|_{t=0} &= |x|^2, \quad x \in \mathbb{R}^n, \quad \{b_{i,j}\} = \frac{1}{2}BB^*(x, T - t).\end{align*} \]

Connection with the random trajectories

\[\mathbb{E}[(y_{\mu}(T; x))^2] = u(x, t; T, \mu)|_{t=T}. \]
<table>
<thead>
<tr>
<th>Statement of the problem</th>
<th>Origin of the problem</th>
<th>Different approaches</th>
<th>Main result</th>
<th>Conclusion</th>
<th>Novelty</th>
</tr>
</thead>
</table>

Novelty in mathematics

Initial problem for the parabolic equation:

\[
\partial_t u - a(x, T-t) \partial_x u - \mu^2 \sum_{i,j=1}^{n} b_{i,j}(x,t-T) \partial_x i \partial_x j u = 0, \\
0 < t < T, \\
u(x,t; T, \mu) |_{t=0} = |x|^2, x \in \mathbb{R}^n; (\forall T > 0).
\]

Barrier function

\[
u(x,t; T, \mu) < V(x,t; T, \mu)
\]

Problem: how to construct an appropriate barrier

\[
V(x,t; T, \mu) = O(|x|^2 + \mu^2), x \to 0, \mu \to 0.
\]
Novelty in mathematics

Initial problem for the parabolic equation

\[
\partial_t u - a(x, T - t) \partial_x u - \mu^2 \sum_{i,j=1}^n b_{i,j}(x, t - T) \partial_{x_i} \partial_{x_j} u = 0, \quad 0 < t < T,
\]
Novelty in mathematics

Initial problem for the parabolic equation

\[
\partial_t u - a(x, T-t) \partial_x u - \mu^2 \sum_{i,j=1}^{n} b_{i,j}(x, t-T) \partial_{x_i} \partial_{x_j} u = 0, \quad 0 < t < T,
\]

\[
u(x, t; T, \mu)\big|_{t=0} = |x|^2, \quad x \in \mathbb{R}^n; \quad (\forall \ T > 0).
\]
Novelty in mathematics

Initial problem for the parabolic equation

\[\partial_t u - a(x, T-t) \partial_x u - \mu^2 \sum_{i,j=1}^n b_{i,j}(x, t-T) \partial_{x_i} \partial_{x_j} u = 0, \quad 0 < t < T, \]

\[u(x, t; T, \mu) |_{t=0} = |x|^2, \quad x \in \mathbb{R}^n; \quad (\forall \ T > 0). \]

Barrier function
Novelty in mathematics

Initial problem for the parabolic equation

\[\frac{\partial u}{\partial t} - a(x, T-t) \frac{\partial u}{\partial x} - \mu^2 \sum_{i,j=1}^{n} b_{i,j}(x, t-T) \frac{\partial^2 u}{\partial x_i \partial x_j} = 0, \quad 0 < t < T, \]

\[u(x, t; T, \mu)|_{t=0} = |x|^2, \quad x \in \mathbb{R}^n; \quad (\forall T > 0). \]

Barrier function

\[u(x, t; T, \mu) < V(x, t; T, \mu) \]
Initial problem for the parabolic equation

\[\partial_t u - a(x, T-t) \partial_x u - \mu^2 \sum_{i,j=1}^{n} b_{i,j}(x, t-T) \partial_{x_i} \partial_{x_j} u = 0, \quad 0 < t < T, \]

\[u(x, t; T, \mu) \big|_{t=0} = |x|^2, \quad x \in \mathbb{R}^n; \quad (\forall T > 0). \]

Barrier function

\[u(x, t; T, \mu) < V(x, t; T, \mu) \]

Problem: how to construct an appropriate barrier

\[V(x, t; T, \mu) = \mathcal{O}(|x|^2 + \mu^2), \quad x \to 0, \quad \mu \to 0. \]
Barrier skill

\[U(y, T) \]

\[\partial_T U + a(y, T) \partial_y U \leq -\gamma U; \]

\[U(y, T) = O(|y|^2), y \to 0; \]

\[V_0(x, t; T, \mu) = U(x, T-t) \exp(-\alpha_0 t) + \mu^2 M\left[1 - \exp(-\alpha_0 t)\right], \]

\[V_2(x, t; T, \mu) = U(x, T-t) \exp(\alpha t), \alpha, \alpha_0 = \text{const} > 0, \]

\[V_1(x, t; T, \mu) = m\mu^2 \exp(\alpha t + U - \rho \mu^2), m, \rho = \text{const} > 0. \]
Barrier skill

Lyapunov function $U(y, T)$ with the local properties
$$\partial_T U + a(y, T) \partial_y U \leq -\gamma U; \quad U(y, T) = O(|y|^2), \quad y \to 0;$$
Lyapunov function $U(y, T)$ with the local properties

$$\partial_T U + a(y, T)\partial_y U \leq -\gamma U; \quad U(y, T) = \mathcal{O}(|y|^2), \quad y \to 0;$$

Global part of barrier

- Far from equilibrium:
 $$V_2(x, t; T, \mu) = U(x, T-t) \exp(\alpha t), \quad \alpha, \alpha_0 = \text{const} > 0,$$

- Local part of barrier:
 $$V_1(x, t; T, \mu) = m \mu^2 \exp(\alpha t + U - \rho \mu^2), \quad m, \rho = \text{const} > 0.$$
Barrier skill

Lyapunov function $U(y, T)$ with the local properties
\[\partial_T U + a(y, T) \partial_y U \leq -\gamma U; \quad U(y, T) = O(|y|^2), \quad y \to 0; \]

Global part of barrier

\[V_0(x, t; T, \mu) = U(x, T - t) \exp(-\alpha_0 t) + \mu^2 M[1 - \exp(-\alpha_0 t)], \]
Barrier skill

Lyapunov function \(U(y, T) \) with the local properties
\[
\partial_T U + a(y, T) \partial_y U \leq -\gamma U; \quad U(y, T) = O(|y|^2), \quad y \to 0;
\]

Global part of barrier

\[
V_0(x, t; T, \mu) = U(x, T - t) \exp(-\alpha_0 t) + \mu^2 M[1 - \exp(-\alpha_0 t)],
\]

Far from equilibrium
Barrier skill

Lyapunov function $U(y, T)$ with the local properties
\[\partial_T U + a(y, T) \partial_y U \leq -\gamma U; \quad U(y, T) = O(|y|^2), \quad y \to 0; \]

Global part of barrier

\[V_0(x, t; T, \mu) = U(x, T - t) \exp(-\alpha_0 t) + \mu^2 M[1 - \exp(-\alpha_0 t)], \]

Far from equilibrium

\[V_2(x, t; T, \mu) = U(x, T - t) \exp(\alpha t), \quad \alpha, \alpha_0 = \text{const} > 0, \]
Lyapunov function $U(y, T)$ with the local properties:

$$\partial_T U + a(y, T)\partial_y U \leq -\gamma U; \quad U(y, T) = \mathcal{O}(|y|^2), \quad y \to 0;$$

Global part of barrier

$$V_0(x, t; T, \mu) = U(x, T - t) \exp(-\alpha_0 t) + \mu^2 M[1 - \exp(-\alpha_0 t)],$$

Far from equilibrium

$$V_2(x, t; T, \mu) = U(x, T - t) \exp(\alpha t), \quad \alpha, \alpha_0 = \text{const} > 0,$$

Local part of barrier
Barrier skill

Lyapunov function $U(y, T)$ with the local properties
\[\partial_T U + a(y, T) \partial_y U \leq -\gamma U; \quad U(y, T) = \mathcal{O}(|y|^2), \ y \to 0; \]

Global part of barrier

\[V_0(x, t; T, \mu) = U(x, T - t) \exp(-\alpha_0 t) + \mu^2 M[1 - \exp(-\alpha_0 t)], \]

Far from equilibrium

\[V_2(x, t; T, \mu) = U(x, T - t) \exp(\alpha t), \ \alpha, \alpha_0 = \text{const} > 0, \]

Local part of barrier

\[V_1(x, t; T, \mu) = m \mu^2 \exp \left(\alpha t + \frac{U - \rho}{\mu^2} \right), \ m, \rho = \text{const} > 0 \]