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Summary

A dynamical system under white noise perturbation is
considered.

Theorem of stability of equilibrium is proved.

The method of parabolic equation is used.

An appropriate barrier function for the Kolmogorov’s equation is
the main mathematical achievement.

The result is applied to prove the stability of the autoresonance
phenomenon.
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Statement of problem

Unperturbed system is ODEq

dy
dT

= a(y,T ), y ∈ Rn, T > 0. (1)

The point y = 0 is equilibrium: a(0,T ) ≡ 0.

Perturbed system is a stochastic Ito equation

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x. (2)

w(T ) is a standard Winer process, B(y,T ) is a matrix n × n,
B(0,T ) 6≡ 0.The solution y = yµ(T ; x) is a random process.

The problem of stability
Does the trajectory y = yµ(T ; x) remain near equilibrium, if the
perturbation µ,x are small and the matrix is in a ball ||B||<M?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of problem

Unperturbed system is ODEq

dy
dT

= a(y,T ), y ∈ Rn, T > 0. (1)

The point y = 0 is equilibrium: a(0,T ) ≡ 0.

Perturbed system is a stochastic Ito equation

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x. (2)

w(T ) is a standard Winer process, B(y,T ) is a matrix n × n,
B(0,T ) 6≡ 0.The solution y = yµ(T ; x) is a random process.

The problem of stability
Does the trajectory y = yµ(T ; x) remain near equilibrium, if the
perturbation µ,x are small and the matrix is in a ball ||B||<M?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of problem

Unperturbed system is ODEq

dy
dT

= a(y,T ), y ∈ Rn, T > 0. (1)

The point y = 0 is equilibrium: a(0,T ) ≡ 0.

Perturbed system is a stochastic Ito equation

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x. (2)

w(T ) is a standard Winer process, B(y,T ) is a matrix n × n,
B(0,T ) 6≡ 0.The solution y = yµ(T ; x) is a random process.

The problem of stability
Does the trajectory y = yµ(T ; x) remain near equilibrium, if the
perturbation µ,x are small and the matrix is in a ball ||B||<M?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of problem

Unperturbed system is ODEq

dy
dT

= a(y,T ), y ∈ Rn, T > 0. (1)

The point y = 0 is equilibrium: a(0,T ) ≡ 0.

Perturbed system is a stochastic Ito equation

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x. (2)

w(T ) is a standard Winer process,

B(y,T ) is a matrix n × n,
B(0,T ) 6≡ 0.The solution y = yµ(T ; x) is a random process.

The problem of stability
Does the trajectory y = yµ(T ; x) remain near equilibrium, if the
perturbation µ,x are small and the matrix is in a ball ||B||<M?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of problem

Unperturbed system is ODEq

dy
dT

= a(y,T ), y ∈ Rn, T > 0. (1)

The point y = 0 is equilibrium: a(0,T ) ≡ 0.

Perturbed system is a stochastic Ito equation

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x. (2)

w(T ) is a standard Winer process, B(y,T ) is a matrix n × n,

B(0,T ) 6≡ 0.The solution y = yµ(T ; x) is a random process.

The problem of stability
Does the trajectory y = yµ(T ; x) remain near equilibrium, if the
perturbation µ,x are small and the matrix is in a ball ||B||<M?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of problem

Unperturbed system is ODEq

dy
dT

= a(y,T ), y ∈ Rn, T > 0. (1)

The point y = 0 is equilibrium: a(0,T ) ≡ 0.

Perturbed system is a stochastic Ito equation

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x. (2)

w(T ) is a standard Winer process, B(y,T ) is a matrix n × n,
B(0,T ) 6≡ 0.

The solution y = yµ(T ; x) is a random process.

The problem of stability
Does the trajectory y = yµ(T ; x) remain near equilibrium, if the
perturbation µ,x are small and the matrix is in a ball ||B||<M?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of problem

Unperturbed system is ODEq

dy
dT

= a(y,T ), y ∈ Rn, T > 0. (1)

The point y = 0 is equilibrium: a(0,T ) ≡ 0.

Perturbed system is a stochastic Ito equation

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x. (2)

w(T ) is a standard Winer process, B(y,T ) is a matrix n × n,
B(0,T ) 6≡ 0.The solution y = yµ(T ; x) is a random process.

The problem of stability
Does the trajectory y = yµ(T ; x) remain near equilibrium, if the
perturbation µ,x are small and the matrix is in a ball ||B||<M?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of problem

Unperturbed system is ODEq

dy
dT

= a(y,T ), y ∈ Rn, T > 0. (1)

The point y = 0 is equilibrium: a(0,T ) ≡ 0.

Perturbed system is a stochastic Ito equation

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x. (2)

w(T ) is a standard Winer process, B(y,T ) is a matrix n × n,
B(0,T ) 6≡ 0.The solution y = yµ(T ; x) is a random process.

The problem of stability
Does the trajectory y = yµ(T ; x) remain near equilibrium, if the
perturbation µ,x are small and the matrix is in a ball ||B||<M?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of problem

Answer
There is not any Lyapunov’s type stability.

Almost all trajectories drift out the equilibrium.

How to understand the stability under white noise?

There are some Khasminskii’s and Freidlin–Wentzell’s results
concerning either dissipative or autonomous systems.
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The results are not applicable to some interesting problems.

What the problems?
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Example

Autoresonance perturbation of the pendulum

d2x
dt2 + sin x = ε · cos(t − αt2),

0 < ε� 1, α ≈ ε4/3.

Figure:
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Example

d2x
dT 2 + sin x = ε · cos(T − αT 2), 0 < ε� 1, α ≈ ε4/3.

The problem: Is stable the capture into resonance?

Anzatz on the initial stage

x(T ; ε) ≈ ε1/3ρ(t) cos(t + Ψ(t)) as t = ε2/3T

Autoresonance solutions:

ρ(t)→∞, t →∞.
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Applications

Model systems of autoresonance:

Main autoresonance equations

dρ
dt

= sin Ψ, ρ
[dΨ

dt
− ρ2 + λt

]
= cos Ψ.

Perturbed pendulum

dρ
dt

= sin Ψ,
dΨ

dt
= ρ− λt , λ = const > 0.

Equations of degenerate resonance

dρ
dt

= sin Ψ,
dΨ

dt
= ρ2 − λt .

And so on....
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Statement of the autoresonance problem

Specific of the autoresonance equations

The equations are nonlinear and nonautonomous.
Almost all systems are nonintegrable.
There are not any small parameter in the equations.

The main object is an autoresonance solution
with increasing amplitude ρ(t)→∞ as t →∞.

There are some solutions of that type.

Problem
Are stable these solutions with respect to random
perturbations?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of the autoresonance problem

Specific of the autoresonance equations
The equations are nonlinear and nonautonomous.

Almost all systems are nonintegrable.
There are not any small parameter in the equations.

The main object is an autoresonance solution
with increasing amplitude ρ(t)→∞ as t →∞.

There are some solutions of that type.

Problem
Are stable these solutions with respect to random
perturbations?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of the autoresonance problem

Specific of the autoresonance equations
The equations are nonlinear and nonautonomous.
Almost all systems are nonintegrable.

There are not any small parameter in the equations.

The main object is an autoresonance solution
with increasing amplitude ρ(t)→∞ as t →∞.

There are some solutions of that type.

Problem
Are stable these solutions with respect to random
perturbations?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of the autoresonance problem

Specific of the autoresonance equations
The equations are nonlinear and nonautonomous.
Almost all systems are nonintegrable.
There are not any small parameter in the equations.

The main object is an autoresonance solution
with increasing amplitude ρ(t)→∞ as t →∞.

There are some solutions of that type.

Problem
Are stable these solutions with respect to random
perturbations?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of the autoresonance problem

Specific of the autoresonance equations
The equations are nonlinear and nonautonomous.
Almost all systems are nonintegrable.
There are not any small parameter in the equations.

The main object is an autoresonance solution
with increasing amplitude ρ(t)→∞ as t →∞.

There are some solutions of that type.

Problem
Are stable these solutions with respect to random
perturbations?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of the autoresonance problem

Specific of the autoresonance equations
The equations are nonlinear and nonautonomous.
Almost all systems are nonintegrable.
There are not any small parameter in the equations.

The main object is an autoresonance solution
with increasing amplitude ρ(t)→∞ as t →∞.

There are some solutions of that type.

Problem
Are stable these solutions with respect to random
perturbations?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Statement of the autoresonance problem

Specific of the autoresonance equations
The equations are nonlinear and nonautonomous.
Almost all systems are nonintegrable.
There are not any small parameter in the equations.

The main object is an autoresonance solution
with increasing amplitude ρ(t)→∞ as t →∞.

There are some solutions of that type.

Problem
Are stable these solutions with respect to random
perturbations?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Initial stage of autoresonance

Autoresonance solutions

Figure:
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Statement of the autoresonance problem

Specific of the autoresonance systems

There are different solutions with increasing and bounded
amplitude as well.

Specific of the reduced systems
There are different trajectories approaching to the equilibrium
and going to infinity as well.

The autoresonance systems are not dissipative
The well known Khasminskii’s results are not applicable.

The autoresonance systems are not autonomous
The well known Freidlin’s results are not applicable.
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Deterministic stability

Perturbed system

dy
dT

= a(y,T ) + µB(y,T ), T > 0; y|T=0 = x.

Measure of stability
is the square perturbed solution

[
(
yµ(T ; x)

)2
] = Uµ(x,T )

Stability uniform for ∀ ||B(y,T )|| ≤ M <∞

∀ ε > 0 ∃ δ, ∆ : ∀ |x| < δ, |µ| < ∆ ⇒ sup
T>0

(
yµ(T ; x)

)2
< ε.
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Deterministic stability

Theorem (Malkin)

If there exists a local Lyapunov function then the equilibrium is
stable with respect to persistent perturbations.

The result is right for some random perturbations, but not for
the white noise (Krasovskii).
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Definitions of stochastic stability

Perturbed system is the Ito’s equation

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x.

Measure of stability
is expectation of the square perturbed solution

E[
(
yµ(T ; x)

)2
] = Uµ(x,T )

Strong stability uniform for ∀ ||B(y,T )|| ≤ M <∞

∀ ε > 0 ∃ δ, ∆ : ∀ |x| < δ, |µ| < ∆ ⇒ E[sup
T>0

(
yµ(T ; x)

)2
] < ε.

Strong stability under white noise can not be at all.
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Stability under given estimates

Perturbed system

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x.

Measure of stability is expectation of perturbed solution

E[
(
yµ(T ; x)

)2
] = Uµ(x,T )

Limited weak stability

(Krasovskii) with given estimates:
∃ δ = δ(ε), ∆ = ∆(ε)

∀ ε > 0, ∀ |x| < δ(ε), |µ| < ∆(ε) ⇒ sup
0<T<µ−2

E[
(
yµ(T ; x)

)2
] < ε.

The given estimates are more appropriate at physics, especially
at the autoresonance phenomenon. It is not the Freidlin’s case.
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Main result

Perturbed system

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x.

Theorem
Let unperturbed deterministic system has a local Lyapunov
function U(y,T ) with the properties

∂T U + a(y,T )∂yU ≤ −γU; U(y,T ) = O(|y|2), y→ 0;

|a(y,T )|, ||B(y,T )||,≤ M·(1+|y|), ∀y ∈ Rn, T > 0; γ,M = const > 0.

Then the equilibrium is limited weak stable (under white noise)
with estimates: δ(ε) = δM

√
ε, ∆(ε) = ∆M

√
ε, (δM ,∆M = const).
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Conclusion

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x.

Lyapunov function of the unperturbed system is a ground for a
barrier function of the Kolmogorov’s equation.

The barrier function provides weak stability with the given
estimates: |µ|, |x| = O(

√
ε) on a long time interval

0 < T < O(µ−2).

There is not weak stability up to infinity 0 < T <∞.

Open problem
Is there weak stability on a very long time interval, for example,
0 < T < O(exp(µ−2))?
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Example

Autoresonance perturbation of the pendulum

d2x
dt2 + sin x = ε · cos(t − αt2),

α ≈ ε4/3, 0 < ε� 1.

Figure:
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Example

Autoresonance perturbation with noise

d2x
dt2 + sin x = ε · (1 + µẇ(t)) cos(t − αt2), α ≈ ε4/3, 0 < ε� 1.

Stability of the autoresonance is proved under condition

|µ| ≤ ε1/6.

Hypothesis

|µ| ≤ | ln ε|?

Exponential time stability is need to prove this hypothesis.
Who can suggest an appropriate barrier for the Kolmogorov
equation?



Statement of the problem Origin of the problem Different approaches Main result Conclusion Novelty

Example

Autoresonance perturbation with noise

d2x
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Novelty in technique

Perturbed system

dy = a(y,T )dT + µB(y,T ) dw(T ), T > 0; y|T=0 = x.

Initial problem for the Kolmogorov’s equation

∂tu − a(x,T − t)∂xu − µ2
n∑

i,j=1

bi,j(x, t − T )∂xi∂xj u = 0,

u(x, t ; T , µ)|t=0 = |x|2, x ∈ Rn, {bi,j)} =
1
2

BB∗(x,T − t).

Connection with the random trajectories

E[
(
yµ(T ; x)

)2
] = u(x, t ; T , µ)|t=T .
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Initial problem for the parabolic equation

∂tu−a(x,T − t)∂xu−µ2
n∑

i,j=1

bi,j(x, t−T )∂xi∂xj u = 0, 0 < t < T ,

u(x, t ; T , µ)|t=0 = |x|2, x ∈ Rn; (∀T > 0).

Barrier function

u(x, t ; T , µ) < V (x, t ; T , µ)

Problem: how to construct an appropriate barrier

V (x, t ; T , µ) = O(|x|2 + µ2), x→ 0, µ→ 0.
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Barrier skill

Lyapunov function U(y,T ) with the local properties
∂T U + a(y,T )∂yU ≤ −γU; U(y,T ) = O(|y|2), y→ 0;

Global part of barrier

V0(x, t ; T , µ) = U(x,T − t) exp(−α0t) + µ2M[1− exp(−α0t)],

Far from equilibrium

V2(x, t ; T , µ) = U(x,T − t) exp(αt), α, α0 = const > 0,

Local part of barrier

V1(x, t ; T , µ) = m µ2 exp
(
αt +

U − ρ
µ2

)
, m, ρ = const > 0
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