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Statement of the problem

Summary

A dynamical system under white noise perturbation is
considered.

Theorem of stability of equilibrium is proved.
The method of parabolic equation is used.

An appropriate barrier function for the Kolmogorov’s equation is
the main mathematical achievement.

The result is applied to prove the stability of the autoresonance
phenomenon.
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Unperturbed system is ODEq
ay _
a7

The point y = 0 is equilibrium: a(0, T) = 0.

aly,7), yeR", T >0. (1)

Perturbed system is a stochastic Ito equation

dy =a(y, T)dT + uB(y, T)dw(T), T >0; y[r—o=X. (2)

w(T) is a standard Winer process, B(y, T) is a matrix n x n,
B(0, T) # 0.The solutiony =y,(T;X) is a random process.

The problem of stability

Does the trajectory y =y, (T; X) remain near equilibrium, if the
perturbation p, x are small and the matrix is in a ball ||B|| < M?



Statement of the problem

Statement of problem

There is not any Lyapunov’s type stability.




Statement of the problem

Statement of problem

There is not any Lyapunov’s type stability.

Almost all trajectories drift out the equilibrium. J




Statement of the problem

Statement of problem

There is not any Lyapunov’s type stability.

Almost all trajectories drift out the equilibrium. J

How to understand the stability under white noise? ]




Statement of the problem

Statement of problem

There is not any Lyapunov’s type stability.

Almost all trajectories drift out the equilibrium. |

How to understand the stability under white noise? ]

There are some Khasminskii’s and Freidlin—Wentzell’s results
concerning either dissipative or autonomous systems.
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2
ZT);%—SinX:e-COS(T—aTz), O<e< 1, arnes

The problem: |s stable the capture into resonance?

Anzatz on the initial stage

x(T;e) ~ e'3p(t)cos(t+ W(t)) ast=e?°T

Autoresonance solutions:

p(t) = oo, t — 0.
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Applications

Model systems of autoresonance:

Main autoresonance equations

dp . av B
E_sm\lf, p[ﬁ—p +>\t} =cos V.

| \

Perturbed pendulum

) Uj
chffzsn-]\p7 Ciﬁ:p—)\t, A = const > 0.

N

Equations of degenerate resonance

And so on....
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Statement of the autoresonance problem

Specific of the autoresonance equations

The equations are nonlinear and nonautonomous.
Almost all systems are nonintegrable.
There are not any small parameter in the equations.

The main object is an autoresonance solution

with increasing amplitude p(t) — co as t — oo.

There are some solutions of that type.

Problem

Are stable these solutions with respect to random
perturbations?
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Statement of the autoresonance problem

Specific of the autoresonance systems

There are different solutions with increasing and bounded
amplitude as well.

| \

Specific of the reduced systems

There are different trajectories approaching to the equilibrium
and going to infinity as well.

The autoresonance systems are not dissipative
The well known Khasminskii’s results are not applicable.

The autoresonance systems are not autonomous
The well known Freidlin’s results are not applicable.
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Measure of stability

is the square perturbed solution

[(Yu(T:%))%] = Uu(x, T)

Stability uniform for V||B(y, T)|| <M < x

Ve>036,A: VX <6, |u <A = sup(yu(T;x))2<s.
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Different approaches

Deterministic stability

Theorem (Malkin)

If there exists a local Lyapunov function then the equilibrium is
stable with respect to persistent perturbations.

The result is right for some random perturbations, but not for
the white noise (Krasovskii).
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Definitions of stochastic stability

Perturbed system is the Ito’s equation
dy =a(y, T)dT + uB(y, T) dw(T), T > 0; Y[r—o =X.

Measure of stability
is expectation of the square perturbed solution

E[(y,(T:x))%] = Uu(x, T)

Strong stability uniform for V||B(y, T)|| < M <

Ve>036, A: Vx| <4, |u| <A = E[sup (yu(T;x))Q] <e.
7>0

y

Strong stability under white noise can not be at all.
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Definitions of stochastic stability
Perturbed system

dy =a(y, T)dT + uB(y, T)dw(T), T > 0; y|r—o = X.

Measure of stability is expectation

E[(y,(T:x))%] = Uu(x, T)

Weak stability uniform for V||B(y, T)|| < M < o

Ve>036,A: V|X| <6, |u <A = supE[(yM(T;x))2] <e.
>0

Weak stability under white noise may be, if the system is
dissipative (Khasminskii). It is not the autoresonance case.
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Definitions of stochastic stability

Perturbed system

dy =a(y, T)dT + uB(y, T)dw(T), T > 0; y|r—o = X.

Measure of stability is expectation

E[(Y,(T:%))?] = Uu(x, T)

Limited weak stability

Ve>036A: Vx| <4, |ul<A = sup E[(y T;x)7]<e.
0<T<pu—2

Limited weak stability is derived from Freidlin’s results if the
system is autonomous. It is not the autoresonance case.
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Stability under given estimates

Perturbed system
dy = a(ya T)dT + MB(ya T) dW(T)a T>0; V|T:0 =X

Measure of stability is expectation of perturbed solution

E[(y,u(T:x))%] = Uu(x, T)

Limited weak stability (Krasovskii) with given estimates:

36 = 6(e), A = A(e)

Ve>0, VX <), lul <AlE) = sup E[(yu(T:x))?] <e.
0<T<pu—2

The given estimates are more appropriate at physics, especially
at the autoresonance phenomenon. It is not the Freidlin’s case.
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Perturbed system

dy=a(y, T)dT + uB(y, T)dw(T), T > 0; y|r—o = X.

Theorem

Let unperturbed deterministic system has a local Lyapunov
function U(y, T) with the properties

orU+a(y, T)oyU < —U; Uy, T)=O(ly[*), y = O;

la(y, T)|,||B(y, T)||, < M-(1+]y]), Vy € R", T > 0; ~, M = const> 0.

Then the equilibrium is limited weak stable (under white noise)
with estimates: () = dyv/e, A(e) = Aynv/e, (dm, Ay = const).
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Conclusion

Conclusion

dy =a(y, T)dT + uB(y, T)dw(T), T > 0; y|r—0 = X.

Lyapunov function of the unperturbed system is a ground for a
barrier function of the Kolmogorov’s equation.

The barrier function provides weak stability with the given
estimates: |ul, x| = O(y/¢) on a long time interval
0<T<O(u3).

There is not weak stability up to infinity 0 < T < oc. |

Open problem

Is there weak stability on a very long time interval, for example,
0< T < O(exp(p2))?
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a?x : 5
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B 0<ex 1.
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Initial problem for the parabolic equation

n
Oru—a(x, T—t)oxu—p? > bij(X, t—T)dxdxu =0, 0<t<T,
=1

u(X, t; T, 1)|—0 = |X[?>, xeR™ (VT >0).

Barrier function

ux, t; Top) < V(. t; T, p)

Problem: how to construct an appropriate barrier
V(X,t; T, ) = O(|X[? + ), x = 0, p — 0.
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Lyapunov function U(y, T) with the local properties
8TU + a(y7 T)ayU S _FYU; U(y7 T) = O(‘y’2)7 y— 0;

Global part of barrier

Vo(x, t; T, 1) = U(x, T — t) exp(—aot) + u*M[1 — exp(—ao?)],

Far from equilibrium

Vo(X,t; T,u) = U(x, T — t)exp(at), o, g = const > 0,

Local part of barrier

Vi(x,t; T, ) = mpu? exp (ozt+ U7—2p>, m, p = const > 0
w
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