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[Mallory, 1974; Lavrenov, 1998] 

Gaastekerk (Apr’52) 

Oranjefontain (Sep’53) 

Jagersfontain (Dec’59) 

Edinburgh Castle (Aug’64) 

World Glory (Jun’68) 

Esso Lancashire (Aug’68) 

Clan Maclay (Oct’69) 

Southern Cross (Oct’69) 

Moreton Bay (Aug’71) 

Bencruachan (May’73) 

Svealand (Sep’73) 

Taganrogsky Zaliv (Apr’85) 

Ship accidents on Agulhas current 

(Suez Canal was closed for 1967-1975, what causeded more intense  

navigation along the coast of Africa) 



[Mallory, ‘74] 

All accidents occurred close to the maximum of the 

current 

There were coexisting different wave systems 

Waves were propagating against the current 

 

Physical mechanisms (?) 

Not the superposition effect! 

Ship accidents on Agulhas current 



●  Linear models (ray theory, caustics) Peregrine & Smith 

(CambPhilSoc’75, RoySoc’79), Peregrine (AdvApplMath’76), Smith 

(JFM’76): trapped modes, dispersion relations,, nonlinear effects on 
caustics  

● Lavrenov (NatHaz’98): rays on a jet current, simulations, Agulhas 
current conditions 

● White & Fornberg (JFM’98): statistics for random current 
fluctuations:  

Moreira & Peregrine (JFM’12), fully nonlinear simulations 

NLS models: 

Smith JFM1976, Turpin et al, JFM 1983, Gerber JFM 1987, Stocker 

& Peregrine JFM 1999, Hjelmervik & Trulsen, JFM 2009, Onorato et 

al, PRL 2011 : current  is  weak  

increase of steepness on longitudinally inhomogeneous opposite currents 

triggers BF instability and strong departure from Gaussianity 

Overview of theoretical approaches 



● DNS:  TT Janssen & Herbers (JPO’09): The increase of 

steepness on opposing current leads to BF instability, etc.  

Non-NLS features: (i) formation of trapped waves. (ii) 

Broad spectrum after the increase of kurtosis.  

 

● Observations: Kudryavtsev et al (JGR 95) observed trapped 

wind waves on the Gulfstream.  

 
The existing theoretical approaches are not 

suitable for describing nonlinear dynamics of 

trapped waves. Hence, we know close to 

nothing. 

 
 
 



The state of the art: the existing paradigm has 

fundamental shortcomings  

2



The main idea 

If  the jet currents are longitudinally uniform, then  the solutions 

to linearized equations of hydrodynamics for  water waves  

could be always presented in a separable form: as waves 

propagating  along the current with some  `modal' dependence 

on the vertical and transverse variables. 

 

The reason the modal description has not been developed: it is 

not easy to find these modes, one has to solve a 2-d BVP. 

 

Here we found a way to solve this problem asymptotically 

under some mild assumptions. This finding provides the 

foundation for systematic weakly nonlinear theory of wave 

dynamics on jet currents. 



The trapped modes differ qualitatively from the 

free waves. This fact profoundly changes all 

aspects of their nonlinear dynamics 

The main idea 



The rogue wave implications 

Waves trapped by jet currents =>  

                                              described in modal representation 

Effectively unidirectional (nonlinear) evolution 

     Increase of rogue wave likelihood  

                                  due to nonlinear self-modulation effects 

There is a crucial difference in wave dynamics  between the  

1D evolution and 2D evolution  
(Onorato et al (PhysFl’02, PRL’09), Waseda (06),  

Gramstad & Trulsen (JFM’07), Mori et al (JGR’07), 

Annenkov & Shrira GRL09, (JPO14) 
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Boundary-value problem 
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no extra assumptions 



Boundary-value problem 
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1. Slow lateral variation of the current,   U = U (y),  << 1 

the longitudinal wavenumber k ~ 1 

Asympotic solution of the BVP 
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1. Weak lateral variation of the current,   U = U (y),  << 1 

the longitudinal wavenumber k ~ 1 

Asymptotic solution of the BVP 
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Asymptotic solutions 

2. The current is moderately weak, |kU| /  ~ ,     << 1 

travelling (passing through) waves 
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1. Slow lateral variation of the current,   U = U (y),  << 1 

the longitudinal wavenumber k ~ 1 

eigenvalues l 2 > 0   for trapped modes 



Asymptotics of moderately weak current 

2. The current is moderately weak, |kU| /  ~ ,  << 1 
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Eigenvalue problem 

The classical stationary Schrodinger eq-n. 

• Trapped modes exist when kU < 0 (the opposing current) 

                             (There is always at least one trapped mode) 

• The eigenfunctions are orthogonal. They form a complete basis 

when passing through waves are taken into account. 

1. Slow lateral variation of the current,   U = U (y),  << 1 

the longitudinal wavenumber k ~ 1 



Model profiles [a set of exact solutions] 

1. Sech2 profile 
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Asymptotics for the tip of the 

current 

Parabolic shape  

is a good approximation  

for the tip of generic jet currents 
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Solutions for the parabolic  

and the sech currents coincide when 

and the mode number, n, is not large 

(many modes) 



Number of trapped modes 
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‘Field study’: Agulhas current 
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Dispersion relation 
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Nonlinear dynamics 

The trapped modes differ qualitatively from 

the free waves. This fact profoundly changes 

all aspects of their nonlinear dynamics.  

 

Here we focus upon wave resonant interactions 



Triad wave resonances 

The resonance 

conditions for 3-wave 

resonances  

 

 

are satisfied  

 

 

 

 

 

The third wave must 

be long 
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3-wave resonances for trapped waves are always allowed 



Triad wave resonances 

3-wave resonances  

 

 

 

are possible for 

waves of comparable 

scales if 

 

 

 

Current  

should be strong 

enough:  

3.0
2

1
1 



kU

kkk 2

 2

kUkg 

1~


kU



Wave resonances 

 

In contrast to free 

wave waves non-

trivial (and  

non-degenerate) 

resonances are 

allowed for 1d 

propagation 
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4-wave resonances between trapped waves of comparable 

scales are  always allowed for currents of arbitrary strength 

 



New type of interactions: Triad 

interactions between  trapped and passing 

through waves 

 
If we consider a pair of trapped modes  

and a passing through wave        then 

the triad resonance conditions, e.g.,  

 

are easy to satisfy. From the perspective of 

trapped modes, the passing through waves have 

infinite energy. This very special interaction leads 

to unlimited growth of trapped waves.  
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Nonlinear equations 

Weakly nonlinear asymptotic theory 
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Asymptotic Series 
Weakly nonlinear asymptotic theory 

 

k ~ ,     (u, v, w) ~  Cph,      << 1 
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Ansatz 
Weakly nonlinear asymptotic theory 

 

k ~ ,     (u, v, w) ~  Cph,      << 1 
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k ~ ,     (u, v, w) ~  Cph,      << 1 

 

Solution in the order 1 
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k ~ ,     (u, v, w) ~  Cph,      << 1 

 

Solution in the order 2 

are subjects for the BVP obtained earlier 
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Equations for 3-wave interactions 
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Equations for 3-wave interactions 
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Equations for 3-wave interactions 
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Assumption of a moderately weak current,  << 1 
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Normal form of the system 
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3-wave interactions are 

essentially non-potential.  

Interaction coefficients 

depend on vorticity of the 

current 



Equations for 4-wave interactions 

Under assumption of  smooth ( << 1) and moderately weak 

current ( << 1) only free (master) modes   should be considered 
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Wave quartet  (r = 1, 2, 3, 4) 
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Equations for 4-wave interactions 



Nonlinear coefficients 

Nonlinear coefficients 
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Mode overlap integrals 
Parabolic current 

one mode self-interaction 

two-mode interaction 

3- and 4- different mode interaction 



Equations 
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Nonlinear dynamics of trapped waves is controlled by 

both triad and quartet interactions.  

 

Depending on the parameters of the current and width 

of the  wave spectrum either triad or quartet might be 

dominant, or both could be equally important. There is 

a variety of scenarios to be explored.  

 

Interaction with the passing through waves results in 

constant pumping of energy into trapped modes.  

 

For the narrowband wave spectra we arrive at the classical 

1-d NLS situation which is now robust.  
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Conclusions 

Description of waves on jet currents: 

●In linear setting there are always trapped modes. BVP is 

solved asymptotically.  The trapped waves differ qualitatively 

from freely propagating waves 

For weakly nonlinear waves:  

● 3-wave resonances always occur. Interactions are non-

potential.  

● nonlinear evolution equations represent coupled systems of 

equations (triads and quartets) 

    Particular cases:  - coupled 1-d NLS equations, 

                         or  - 1-d NLS equation.  

● Interaction with passing through waves leads to constant 

pumping of energy into the trapped modes. 



Conclusions 

Effectively 1D dynamics of 3D waves =>  

   ● 1D propagation is imposed by the physical                    

nature of trapped modes. No need in narrow angular 

spectrum  assumptions.  A true 1D NLS framework for water 

waves  

    ● unmitigated effects of modulational instability 

    ● There is a principal possibility of the rogue wave 

deterministic forecasting due to the integrability of the NLS  

model or proximity to an integrable system of more general 1d 

models 



Generalizations: 

Other types of waveguides: 

 

• Topographic (e.g. bars) . 

• Combined (topography + current) , e.g. longshore 

currents and nearshore environment. 

• Other geometries (e.g. vortices rather than jets). 

• Other types of waves (e.g. internal waves) 



Rogue wave implications 

Linear and nonlinear effects which increase probability of 

freak waves on jet currents 

● Effectively 1D wave dynamics + decrease of group 

velocity => better conditions for  

   the modulational instability onset and development 

● Adiabatic non-uniformity of the current 

      wave steepening due to change of group velocity 

      with extra  mode localization (focusing) at stronger 

 currents         

 additional amplification of nonlinear wave groups    

●   rise of the ceiling: increase of the maximal allowed 

amplitude (before breaking) due to 3-d structure of the 

wave  

 



Thank you! 
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