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What Hasselmann equation is written for?

Qo =< |Mkw|? > — space-time spectrum of the surface.
In the linear approximation

Wk
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(Nké(w — wk) + N_ké(w + wk))
In reality
N = N()kJr,LL2N1k+...

(w is average steepness)
Ny includes "bound harmonics”
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(w is average steepness)



The Hasselmann equation reads
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New form of coupling coefficient
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The above form should be symmetrized:
1 /= .
T ks ks = 5 <T1234 + T2143)

The diagonal part
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Asymptotics

ki + ko = ks + kg
w1+ w2 =ws3+ws

Suppose ki < ky, k3 < ky. In this case
k2 ~ k4

|ki| ~ |ks|




After some lengthy algebra we get the asymptotic value of T:

1
Tk17k21k37k4) = _§k12k2 T9192

To,0, = (cos b1 + cos b3) cos(f; — 63)



Diffusion equation

Let N = Ng + Ny
No — low frequency
ONy 0 0

R ——— D PN 2_ 7
ot (3'/(,Duk 8k,N
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D; = 2ng*/? / dq q*'/? / doy [ d6s|T(61,605) pip;N(0, q)N(63, q)
0 0 0

p1 =cosf; —cosfz, pr=sinf; —sinfb3

In the isotropic case
My _ DD 3ol
ot k ok Ok



10

Powerlike spectra

For N = k—* we define the function F such that
S = g% k—3x+E F(x)

F(x) is defined for 2 < x < £
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Comparison of the F function with that of DIA method
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Kolmogorov type spectra

Kolmogorov type spectra

N~ (PS)us L
g k*
N,E2) = o (%)1/3 1 .
g3/2 k23/6
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Existence of the "window of opportunity” g <x < % is the result of
cancellation of the terms

Snt = Fi — TN

However, each particular term typically is divergent at small wave
numbers. Now for k >> kq, k3

Mk = 2mg? / | Tk ks |2 0wy — wiy ) Niy Nig dky dko

For a spectrum narrow in angle

M = 8mg3/? k? cos? 0 / K22 N2 (ky) dky
0
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For the "mature sea” the Pierson-Moskowitz spectrum

E k3/2
Ne=>E 5 g0 1)
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M =7.06-10%w (“) cos
Wp



15

Compare nonlinear damping decrement and wind input increment

Donclan

Hsiao & Shemdin

o
(]

10 00
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Snr surpasses S;, and Syiss in order of magnitude !
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Phillips-like dissipation term

One can adjust the Kolmogorov-Zakharov and dissipative (Phillips)
solutions — both are self-similar !

In E

KZ-solution

Phillips solution

In ®
Sdiss = —AphitlipswO(w /wp — q) i, E(w) , where 2, = Ew®/g?
q ~ 3 + 4 — dissipation cut-off
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Dissipation term

Sdiss = — Aphillipsw©(w/wp — q) iy, E(w)

has the same homogeneity properties as the collision integral

Sn(aE, bw) = a*b' S, (E,w)

For power-like spectra E ~ w™*

S = C(2)wO(w/wy — Q)i E(w)
Spectral slope —5 fixes the dissipation rate

Aphitlips = C(5) = 2.19
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Domains of constant and decaying fluxes are co-existing. The Phillips tail
close to w3 is seen well in 1 day of evolution.

— 824760
—=—=284760

104760
C 009232

Phillips’ spectra and fluxes for Appjjips = 1.22
Dashed line extreme Phillips’ constants a;, = 0.0081 and o, = 0.018 (see
Dynamics and Modelling of Ocean Waves by Komen et al. 1994). Solid

line E(w) ~w™*.
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Self-similar solutions for Hasselmann's equation

Equation written for e(w) (where e(w) dw = w(k)N(k)k dk)
has a family of self-similar solutions

e(w, t) = tPT9e(pt9)
p and g are related as
_2p+1
9
The new form of Sgiss may be included here without violation of
self-similarity!

For swell
q_ll’ p= 11 p=—q
N—/de:cons‘u
w
For N ~ t
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Let /1,2 = E—w;, vV = wpt.
The universal quantity
ag = uiy
does not depend on choice of p !
(See the talk of Badulin and all)
The stationary equation
cosf ON
o ox
has similar solution with
_2p+1
77 10

(See the talk of Pushkarev and all)
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Quadruplet form of the Hasselmann’s equation

ki +ko = ks +ky
w1+ w2 = w3 +ws

Let us study and classify the quadruplets satisfying the resonance

conditions.
Qudruplets may be scaled and rotated. Base vector kg defines the

quadruplet scale and direction

(ks +ka)

1
(k1 + ko) = 5

N| -

kg =

The dimensionless modulus s

71&)14—&)2 w3+w4

1
2 gks 2 gkg
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1. Central (DIA-like) quadruplets. Reside at the Phillips curve

sl k=1l k~1
They transfer most of energy.
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T coefficient for central quadruplets (not to scale)

T vanish at Phillips curve sides. The wave interactions from these
quadruplets are insignificant.
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2. Long-short interactions

S—>§. ki K ko, k3 < ky

Most special kind of quadruplets.
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3. Angular quadruplets

S — 00, ky & —ko, k3 = —ka, ki = k3
They play significant role in transfering the energy to the oblique
directions



We need two more parameters for quadruplets. We introduce
dimensionless A and u

01 =s(1-2X)
@2 =5s(1+ )
w3 =s(1—p)
(I}4:5(1+M)

(The tilde signifies dimensionless variables.)

Any quadruplet parameter may be calculated from s, A and p using only
elementary functions. For example:

1-2s*(A+)3)
C0591 = w
1—2s*(u+ 4%

cosfz = TR
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The Hasselmann equation may be rewritten in dimensionless quadruplet
variables:

ON, - 2.
aitk - 7Tg3/2k19/2 / (T;1|:2§3|~(4) kl 223 X
K ks
X (NN3Ng + NoN3Ng — NNo N3 — NNy N,) 6(s — ') dky dks

The base vector kg is impicitly present inside the integral.
It is calculated from k = ki kg.
s’ is calculated from ks and kj.
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The energy spectrum ¢ is introduced in such a way that

edwdl = wN dk

2
e = wN
g?

The Hasselmann equation for energy is

Os m 5
a—Zg /T(JJBX

k1,ks
( €e€3€4 €0E3€4 €e0es3 €E2€s
~4~ 4~ ~4~3 e~ ~A~A~d T ~4~3 o~
ofojay  W3adaq w1w2w3 oTw3o,

) 6(s — s') dk; dks
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gi = e(w;i, 0;) = e( Oiwsg, 0; + )

(6; is the angle between kg and k; ).
Let g mean the quadruplet ki, ko, k3, Ka.

S ) 11 E1E3€&4 E2E3E4 E1E2€3 E1E2&4
(ws, 0B, q) = wg ARG 7t =37 T =437 T ~a 32
P 052 ROV V. sy R 0 (07 52 QR (% (v

The quadruplet form of the kinetic equation is

O(w, 0 _ - j n ).
) 2t [ 7 (S(fn, 0 -, @)+ S/, 0 ) -

R1<E27E3<R4

— S(w/@s, 0 — b5, q) — S(w/@a, 6 — ba, q)) 3(s — ') dk, dks
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Instead of d(s — s') dky dks we may use any other parametrisation.

6(s — ') dk; dks = Jdsd\ dpu
o 64s5(1— N2)(1 - p?)
N sin(91 — (92) sin(93 — 94)
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New numerical algorithm for solving the
Hasselmann's equation

The algorithm is based on the quadruplet grid. First the set of modulae
is chosen than set of grid points for each modulus is chosen. Each point
gives two quadruplet vectors, thus a quadruplet consists of two grid
points.

The figure shows set of 10 modulae from s = 0.96 to s = 2.5 with 8
points for each modulus. This is nearly minimal grid adequate for the
calculations.

3
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The k plane is divided into cells each containing a grid points. Cell areas
are directly substituted into calculations thus avoiding the use of the
Jacobian.

Most significant grid points are those near the center of the Phillips
curve. Any incorrectness in cell size or the matrix coefficient yields
significant discrepancy in the energy flux.

Generally, spectrum is steep in k but not by . We choose the grid points
to be equidistant by k to better cover the steepness of k.
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Comparison with Resio—Tracy and DIA methods

Test calculation results:
Pumping at fy < f < fax and cosf >0

f'
y=16x10"" ﬂ(f — fy)?cosd
fo = 0.1Hz (fmax = 1Hz is introduced for techical reasons)

No damping is required. The energy is naturally transfered by the
Kolmogorov cascade outside of the computation zone.
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New calculation. DIA calculation
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logyo n(k)
|
&
logyo n(k)
o

H H
=20005s, E:Ii 49e+00

H
51ep=22000,§:19999s, E=1.384e400, cputime=2819.315

5 0.1 Freq“;iy - 0.5 1 2 0.02 0.05 0.1 Freq“;iy - 0.5 1 2
New calculation. Resio—Tracy

Algorithm works several times faster than WRT (Wenn-Resio-Tracy) one
and 20 times slower than DIA. There are chances to make it faster. 2400
quadruplets are used in the calculations in figures; we plan to make the
namber much smaller.
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New calculation.
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Summary

The Kolmogorov-Zakharov soluti
inverse cascades) are universal fe
Hasselmann equation;
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