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Why “Wind rules waves”?

Even in the idealized setup the wind wave evolution is
determined by a long set of physical quantities:

“external” Uwind , g , x and
“intrinsic” Hs , T , . . .
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The law of growth of self-similar wind-driven seas

µ4 ν = α30

µ = akp =
ω2
p

√
<η2>

g – wave steepness

ν – number of waves (ν = ωpt or ν = 2kpx)

α0 – a constant (α0(d) = 0.7 or α0(f ) = 0.62)

Wave growth is wind-free!?
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We change the concept ?

Waves evolves on their own
instead of conventional

Wind rules waves
Try to show consistency of our paradoxical

results with previous studies
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In this talk

1 Self-similarity of wind-driven seas

2 Simulations of duration- and fetch-limited setups

3 Sea wave growth in field measurements

4 Wind wave tank experiments

5 Summary

You are welcome to copy this presentation
badulin@ioran.ru



Self-similarity
and

universality of
wind wave

growth

V. Zakharov,
S. I. Badulin,
P. A. Hwang

and
G. Caulliez

Theory

Simulations

Sea
measurements

Wind wave
tank

Summary

6 / 26

Theory of self-similar wind-driven seas

1 The kinetic equation (Hasselmann, 1962)

dE/dt = Snl + Sin + Sdiss ⇒

Sin + Sdiss – wave input and dissipation, mostly empirical;
Snl – 4-wave resonances – explicit expression from the first
principles

2 Dominating nonlinearity – key assumption (or key fact for
sea waves)

dE/dt = Snl (1)

〈dE/dt〉 = 〈Sin + Sdiss〉 (2)

NB from VZ: Our Lord is graduated in theoretical physics.
Hence, the Nature is described by a set of asymptotic models
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Families of self-similar solutions

1 Homogeneity of the collision integral Snl (deep water)

Snl (cE (dk)) = c3d17/2Snl (E (k))

2 Self-similar power-law solution (∇ξ ≡ 0)
For Eq. 1 – conservative KE in terms of energy

E (k, t) = atpτ+4qτ Φ(bktqτ )

4 free parameters !!!

3 Closure condition – integral balance is consistent with
Eq. 1 when wave input is power-law function of time

∂E/∂t = 〈Sin + Sdiss〉 = At−qτ−1

2 free parameters only !!!
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Scale invariance and magic numbers

1 From homogeneity of the collision term Snl

a = b17/4; qτ =
2pτ + 1

9
(3)

2 Equation for the ‘shape function’ Φ(ξ)

(pτ + 4qτ )Φ(ξ) + 2qτ∇ξΦ(ξ) = Snl(Φ(ξ))

Shape function depends on parameter pτ only !

3 From eq. 3 one can get the stationary combination

E 2ω9
pt = (akp)4(ωpt) = µ4ν = const

The invariant depends on integrals of the shape function
only (i.e. on pτ ) !!!
And this dependence is weak – spectral shape invariance
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An alternative form – weakly turbulent law of
wind-wave growth, Badulin et al., J.Fl.Mech. 2007

An alternative use of homogeneity properties

µ2 =
Eω4

p

g2
= αss

(
ω3
pdE/dt

g2

)1/3

with rate-dependent parameter of self-similarity

αss ≈
α0

p1/3

Build an adiabatic approach to switch between different
exponents or to consider the new formulation

µ4ν = α3
0

as an adiabatic invariant that does not contain a parameter of
adiabaticity?
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Physical meaning of the wave invariant

Wave invariant
µ4 ν = α30

Life is smoother – life is longer

µ =
ω2
p

√
<η2>

g – steepness; ν = ωpt – lifetime

Lifetime is counted in instant relaxation times
ν ∼ τnl – lifetime is proportional to the instant

nonlinear relaxation scale τnl ∼ µ−4



Self-similarity
and

universality of
wind wave

growth

V. Zakharov,
S. I. Badulin,
P. A. Hwang

and
G. Caulliez

Theory

Simulations

Sea
measurements

Wind wave
tank

Summary

11 / 26

The wind-free scaling of wind wave growth

Conventional wind speed scaling

H̃ = gHs/U10; T̃ = gT/U10

Duration-limited

qτ =
2pτ + 1

9

H̃ =
Hs

gt2
;

T̃ =
Tp

2πt
; T̃ = ν

H̃ = 4α
3/4
0(d)T̃

9/4 ≈ 3.06T̃ 9/4

Fetch-limited

qχ =
2pχ + 1

10

H̃ =
Hs

x
;

T̃ = Tp

√
g

8π2x
; T̃ = ν−1/2

H̃ = 8α
3/4
0(f )T̃

5/2 ≈ 5.59T̃ 5/2
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Self-similar solutions in simulations. Pushkarev et
al. 2004, Badulin et al, 2002, 2005, 2008

Figure : Wave spectra for duration-limited growth. Wave input by
Hsiao & Shemdin, 1981, U10 = 10m/sec, time in hours
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Simulations. Duration-limited growth in terms of
the invariant µ4ν = α3

0

All curves are collapsing to the invariant value.
Simulations from our previous papers:

Pushkarev et al. 2004, Badulin et al. 2002, 2005, 2007.
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Simulations. Fetch-limited growth in terms of
H̃s = 5.59T̃ 5/2 and H̃s = 3.06T̃ 9/4

Recent results by Zakharov & Pushkarev, 2012.
There is no “pure fetch-limited” growth.

Wind-free scalings work as intermediate asymptotics
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Sea wave growth in field measurements
since the Overlord operation

Sverdrup & Munk (1947) and their
concept of significant wave height
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Data by Sverdrup & Munk (1947)
within wind speed and wind-free scalings
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Sea wave growth in field measurements.
Hwang & Wang (2004) power-law fits

Exponents of HW(2004) power-law fits satisfy (cf. our theory)

qχ =
2Pχpχ + Qχ

10
; qτ =

2Pτpτ + Qτ
9

where Pχ = 0.85; Qχ = 0.99; Pτ = 0.85; Qτ = 0.99
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Sea wave growth in field measurements.
Hwang & Wang power-law fits and our invariant

“The Hwang & Wang (2004) invariant”

(µ4ν)χ−0.54+0.039 lnχ = Ifetch

factor 2.7 for the range of dimensionless fetch 10− 105 !!!
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Waverider data of Field Research Facility of the US
Army Corps of Engineers

5 FRF wave riders

ID Fetch N

190 6.1 km 102
192 18.5 km 35
200 18.5 km 24
430 18.5 km 606
630 3.0 km 171

Nothing but data selection in wave direction
±30◦ to the off-shore (exc. B200) !!!
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Wave rider data of Field Research Facility of the
US Army Corps of Engineers

Wind-free law of wind wave growth
H̃ = 5.59T̃ 5/2
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Wind wave tank experiments
Beyond the theory or beyond the reality ?

Depth 0.9 m, width 2.6 m, air tunnel height 1.5 m
Fetches 2− 26.2 meters; Wind speeds 2.5− 12 m/s;

Wave age C/U > 5;
Number of wave periods x/λ = 15− 500
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Wind wave tank experiments
Wind speed scaling for Toba (1972) and G. Caulliez

No corrections for Toba’s data Corrections for Toba’s u∗

Data by Caulliez “see” a transition to the Toba law;

Parameter ranges for Y. Toba and G. Caulliez are close;

Corrections for capillarity and drift current are necessary
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Wind wave tank experiments
Wind free scaling for Toba (1972) and G. Caulliez

No data corrections for drift
current and capillarity

Corrections moves the Caulliez
data to the wind-free law

Corrections make data closer to the theoretical line;

Toba’s data have shorter lifetime than ones by Caulliez:
within the new scaling data ranges are not the same
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Summary

Self-similar solutions for duration- and fetch-limited
wind wave growth are generalized in the form of
the wind-free invariant;

Wind-free scaling of wind-wave growth is proposed;

Consistency of the theory with previous results of
theoretical, experimental (sea and wind wave tank)
and numerical studies is demonstrated
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Analytical wind wave theory is running
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THANK YOU
Our special thanks for data provided by the Field Research

Facility, Field Data Collections and Analysis Branch, US
Army Corps of Engineers, Duck, North Carolina

to Andrey Pushkarev

P. N. Lebedev Physical Institute
for data of simulation of fetch-limited growth
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