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Integrable hierarchies with non-zero and zero dispersion

arXiv:1310.5834 [nlin.SI]

Two important classes of intregrable hierarchies:

Equations with non-zero dispersion

Dispersionless systems (hydrodynamical-type equations).

Equations with non-zero dispersion are studied much better:
Korteveg-de Vries equation, Nonlinear Schr�odinger equation,
Sine-Gordon equation, Kadomtsev-Petviashvili equation ...
The Lax pair contains higher-order di�erential operators.
Dressing method, Darbough transformations, soliton solutions,
�nite-gap integration.
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Dispersionless systems

Dispersionless integrable systems:

They have no soliton solutions

They may have wave breaking.

They may have arbitrary many spatial variables.

The study of 1+1 dispersionless systems as completely
integrable sytems was started in the middle of 1980's.
Dubrovin B.A., Novikov S.P., �Hamiltonian formalism of
one-dimensional systems of the hydrodynamic type and the
Bogolyubov-Whitham averaging method�, Soviet Math. Dokl.
27,(1983), 665-669.
Tsarev S.P., �On Poisson bracket and one-dimensional systems
of hydrodynamic type, Soviet Math. Dokl. 31 (1985), 488-491.
Di�erent integration methods - generalized Hodograph
transformation.
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Dispersionless multidimensional integrable systems

Lax pairs for multidimensional dispersionless systems based on
vector �elds:
V. E. Zakharov and A. B. Shabat, �Integration of nonlinear
equations of mathematical physics by the method of inverse
scattering. II�, Functional Anal. Appl. 13, (1979), 166-174.

A series of papers by S.V. Manakov, P.M. Santini � how to
develop an analog of the dressing method for dispersionless
systems with more than one spatial variables?
S.V. Manakov and P. M. Santini �Inverse scattering problem for
vector �elds and the Cauchy problem for the heavenly
equation�, Physics Letters A 359 (2006) 613-619.
http://arXiv:nlin.SI/0604017.
S. V. Manakov and P. M. Santini �On the solutions of the second
heavenly and Pavlov equations�, J. Phys. A: Math. Theor. 42
(2009) 404013 (11pp). doi: 10.1088/1751-8113/42/40/404013.
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Dispersionless multidimensional integrable systems

S.V. Manakov asked Santini and me to study, how to make this
approach mathematically rigorous. It turns out, that
development of a proper analog of spectral transform for zero
dispersion case is a very non-trivial mathematical problem.
In this paper we solve the Caughy problem for the
mathematically simplest equation of such type � the so-called
Pavlov equation.

vxt + vyy + vxvxy − vyvxx = 0, v = v(x, y, t),

assuming, that the Cauchy data

v(x, y, 0)

is su�ciently small.
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Dispersionless Kadomtsev-Petviashvili equation

1. Dispersionless Kadomtsev Petviashvili equation =
Khokhlov-Zabolotskaya equation.

(ut + uux)x + uyy = 0, u = u(x, y, t) ∈ R, x, y, t ∈ R,

Used in physical models:
C. C. Lin, E. Reissner, and H.S. Tsien, �On two-dimensional
non-steady motion of a slender body in a compressible �uid�.
Journal of Mathematical Physics, 27, (1948). 220-231.
Lax representation [L̂1, L̂2] = 0:

L̂1 ≡ ∂y + λ∂x − ux∂λ,

L̂2 ≡ ∂t + (λ2 + u)∂x + (−λux + uy)∂λ

where λ ∈ C � is the spectral parameter.
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Dispersionless Kadomtsev-Petviashvili equation

Exact solutions of dKP using algebro-geometrical methods:
I. M. Krichever, �Method of averaging for two-dimensional
�integrable�equations�, Funkts. Anal. Prilozh., 22:3 (1988), 37�52
The Lax representation of DKP is the quasiclassical limit of the
KP Lax representation.
V. E. Zakharov �Dispersionless limit of integrable systems in
2+1 dimensions�, in Singular Limits of Dispersive Waves, edited
by N.M.Ercolani et al., Plenum Press, New York, 1994.
Some solutions of the DKP (as well as solutions of Whitham
equation for n-phase KP averaging).
I. M. Krichever �The τ-function of the universal Witham
hierarchy, matrix models and topological �eld theories�, Comm.
Pure Appl. Math. 47, 437-475 (1994).
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Dispersionless multidimensional integrable systems

Semiclassical version of the non-local ∂̄ problem:
Konopelchenko, B.; Mart��nez Alonso, L.; Ragnisco, O. The
∂̄-approach to the dispersionless KP hierarchy. J. Phys. A 34
(2001), no. 47, 10209�10217.
Bogdanov, L.V., Konopel'chenko, B. G.; Martines Alonso, L.
The quasiclassical ∂̄-method: generating equations for
dispersionless integrable hierarchies. Theoret. and Math. Phys.
134 (2003), no. 1, 39�46,
Quasiclassical analog of the Lax pairs in these paper is
non-linear.
The approach by Manakov and Santini in based on linear
operators.
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Dispersionless multidimensional integrable systems

Some other examples from the paper:
S. V. Manakov, P. M. Santini �Solvable vector nonlinear
Riemann problems, exact implicit solutions of dispersionless
PDEs and wave breaking�. arXiv:1011.2619 [nlin.SI]

2. The vector nonlinear PDE in N + 4 dimensions:

~Ut1z2 −
~Ut2z1 +

(
~Uz1 · ∇~x

)
~Uz2 −

(
~Uz2 · ∇~x

)
~Uz1 = ~0,

where ~U(t1, t2, z1, z2, ~x) ∈ RN, ~x = (x1, . . . , xN) ∈ RN and
∇~x = (∂x1 , .., ∂xN),
The Lax operators are (N + 1) dimensional vector �elds

L̂i = ∂ti + λ∂zi + ~Uzi · ∇~x, i = 1, 2.
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Dispersionless multidimensional integrable systems

3. Its dimensional reduction, for N = 2:

~Utx − ~Uzy +
(
~Uy · ∇~x

)
~Ux −

(
~Ux · ∇~x

)
~Uy = ~0,

~U ∈ R2, ~x = (x, y), ∇~x = (∂x, ∂y),

where: t1 = z, t2 = t, x1 = x, x2 = y and

L̂1 = ∂z + λ∂x + ~Ux · ∇~x,

L̂2 = ∂t + λ∂y + ~Uy · ∇~x.

4. Its Hamiltonian reduction ∇~x · ~U = 0, U1 = θy, U2 = −θx
gives the celebrated second heavenly equation of Plebanski:

θtx − θzy + θxxθyy − θ
2
xy = 0, θ = θ(x, y, z, t) ∈ R, x, y, z, t ∈ R,

The Lax operators:

L̂1 ≡ ∂z + λ∂x + θxy∂x − θxx∂y,

L̂2 ≡ ∂t + λ∂y + θyy∂x − θxy∂y.
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Dispersionless multidimensional integrable systems

5. The two-dimensional dispersionless Toda (2ddT) equation
J. D. Finley and J. F. Plebanski �The classi�cation of all K
spaces admitting a Killing vector�, J. Math. Phys. 20, 1938
(1979).
V. E. Zakharov �Integrable systems in multidimensional spaces�,
Lecture Notes in Physics, Springer-Verlag, Berlin 153 (1982),
190-216.

φζ1ζ2 =
(
eφt

)
t
, φ = φ(ζ1, ζ2, t)

(or ϕζ1ζ2 = (eϕ)tt , ϕ = φt),
The Lax operators:
K. Takasaki and T. Takebe �SDIFF(2) hierarchy�, Proceedings
of the RIMS Research Project 91 �In�nite Analysis�. RIMS-814,
1991.

L̂1 = ∂ζ1 + λe
φt
2 ∂t +

(
−λ(e

φt
2 )t +

φζ1t
2

)
λ∂λ,

L̂2 = ∂ζ2 + λ−1e
φt
2 ∂t +

(
λ−1(e

φt
2 )t −

φζ2t
2

)
λ∂λ,
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Dispersionless multidimensional integrable systems

6. A system of two nonlinear PDEs in 2 + 1 dimensions:

uxt + uyy + (uux)x + vxuxy − vyuxx = 0,
vxt + vyy + uvxx + vxvxy − vyvxx = 0,

with Lax operators:

L̃1 ≡ ∂y + (λ + vx)∂x − ux∂λ,

L̃2 ≡ ∂t + (λ2 + λvx + u − vy)∂x + (−λux + uy)∂λ,

describing a general integrable Einstein-Weyl metric
M. Dunajski, �The nonlinear graviton as an integrable system�,
PhD Thesis, Oxford University, 1998.
M. Dunajski �An interpolating dispersionless integrable system�;
J. Phys. A 41 (2008), no. 31, 315202, 9 pp. arXiv:0804.1234.
M. Dunajski, E. Ferapontov, B. Kruglikov �On the
Einstein-Weyl and conformal self-duality equations�,
arXiv:1406.0018 [nlin.SI].

7. Its v = 0 reduction is dKP (Khokhlov-Zabolotskaya).
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Pavlov equation

The so-called Pavlov equation:

vxt + vyy + vxvxy − vyvxx = 0, v = v(x, y, t) ∈ R, x, y, t ∈ R,

commutativity condition for the following pair of vector �elds:

L = ∂y + (λ + vx)∂x,

M = ∂t + (λ2 + λvx − vy)∂x,

where λ ∈ C � spectral parameter.
M. V. Pavlov �Integrable hydrodynamic chains�, J. Math. Phys.
44 (2003) 4134-4156.
M. Dunajski �A class of Einstein-Weyl spaces associated to an
integrable system of hydrodinamic type�, J. Geom. Phys. 51
(2004), 126-137.
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Prandtl equation and Pavlov equation

The zero pressure Prandtl equation for the potential Φ

Φxt − Φxxx + ΦxΦxy − ΦyΦxx = 0.

has the same nonlinear terms as the Pavlov equation

vxt + vyy + vxvxy − vyvxx = 0,

but the dissipative term −Φxxx instead of the di�ractive vyy.

While the zero-pressure Prandtl equation with suitable
boundary conditions gives rise to blow-up at �nite time:
W. E, and B. Engquist �Blowup of solutions of the unsteady
Prandtl's equation�, Communications on Pure and Applied
Mathematics, 50, Issue 12 (1997), 1287-1293,
we prove in this paper that localized and su�ciently small
initial data for Pavlov equation remain smooth at all times.
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Prandtl equation and Pavlov equation

The inviscid Prandtl equation

Φyt + ΦyΦxy − ΦxΦyy = 0

can be linearized using some partial Legendre transformation,
and it also shows formation of singularities at �nite time
(private communication by E.A. Kuznetsov).

This equation can be obtained as the zero-di�raction limit of
the Pavlov equation. In this limit the constants in our estimates
goes to in�nity, therefore there is no contradiction.
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Pavlov equation

We show, that for �su�ciently good� Cauchy data, satisfying, in
particular, the �small norm condition�, the spectral transform for
the Pavlov equation provides us a regular solution for all t > 0.
Remark. Manakov and Santini used two di�erent formulations
for the inverse spectral problem:

The approach based on a singular integrable equation for
the wave function.

The approach based on the nonlinear Riemann-Hilbert
problem.

They are not equivalent.
We us the �rst one.
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Direct spectral transform

To avoid extra technicalities, we assume that
v0(x, y) = v(x, y, 0) ∈ R is smooth and has compact support:

v0(x, y) = 0 outside the area −Dx ≤ x ≤ Dx,−Dy ≤ x ≤ Dy.

Step 1: We construct the Jost functions and the classical
scattering data. By de�nition, the Jost functions are solutions of:

Lϕ±(x, y, λ) = 0, L = ∂y + (λ + vx)∂x,

such that
ϕ±(x, y, λ)→ x − λy as y → ±∞.

The zero eigenfunctions of L � are exactly the functions, which
are constant on the characteristics, i.e. are constant on the
solutions of the corresponding ODE:

dx

dy
= λ + vx(x, y).
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Direct spectral transform

Consider the solutions of the following Cauchy problem:

x(y) = x0 ïðè y = y0.

We have the following asymptotic:

x(y)→ λy + x±(x0, y0, λ), y → ±∞.

It is easy to see that

x±(x0, y0, λ)→ x0 − λy0 as y0 → ±∞;

therefore
ϕ±(x0, y0, λ) = x±(x0, y0, λ).
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Direct spectral transform

The classical scattering amplitude σ(ξ, λ) is de�ned ξ ∈ R, λ ∈ R
as the function connecting the asymptotic at y → +∞ and
y → −∞

x+(x0, y0, λ) = x−(x0, y0, λ) + σ(x−(x0, y0, λ), λ).

Therefore

ϕ+(x, y, λ)→ x − λy + σ(x − λy, λ) as y → −∞.

It is easy to prove the analytic properties of σ(ξ, λ) using the
standard ODE theory.
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Direct spectral transform

Step 2: We construct the eigenfunction, analytic in the spectral
parameter.
For complex λ let us introduce the following complex notations:

z = x − λy, z̄ = x − λ̄y

Equation on the wave function takes the form:

LΦ±(x, y, λ) = 0, L = ∂y + (λ + vx)∂x.

and can be written as Beltrami equation:

[∂z̄ + b(z, z̄, λ)∂z] Φ(z, z̄, λ) = 0,

where

b(z, z̄, λ) =
vx(z, z̄)

2iλI + vx(z, z̄)
.
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Direct spectral transform

It is uniquely solvable without the small norm assumption, and
is holomorphic in λ for Im λ , 0.
What happens if Im λ � 1, Im λ < 0?

Outside a small neighborhood of the real line in the z-plane thef
function Φ−(x, y, λ) is holomorphic in z and almost constant on
the characteristics. We show that the limit Φ̂±(z, λ) = Φ−(x, y, λ)
and Im λ→ −0 is well-de�ned and satisfy the shifted Riemann
problem:

Φ̂(ξ − iε, λ) ∼ Φ̂(ξ + σ̃(ξ, λ) + iε, λ).
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Direct spectral transform

Thertefore

Φ−(x, y, λ) = ϕ−(x, y, λ) + χ−(ϕ−(x, y, λ), λ) =

= ϕ+(x, y, λ) + χ+(ϕ+(x, y, λ), λ)

Φ+(x, y, λ) = Φ−(x, y, λ),

and the spectral data χ±(ξ, λ) satisfy the shifted Riemann
problem:

σ(ξ, λ) + χ+(ξ + σ(ξ, λ), λ) − χ−(ξ, λ) = 0, ξ ∈ R,

∂ξ̄χ = 0 äëÿ ξ ∈ C±,

χ→ 0 ïðè |ξ| → ∞.

This procedure is analogous to the construction of non-local
Riemann problem data in the classical paper by Manakov
dedicated to KP-1.
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Inverse spectral transform

By analogy with dispersive systems, there are two ways of
de�ning the time dynamics: By introducing the
time-dependence in the spectral data:

σ(ξ, λ, t) = σ(ξ − λ2t, λ, 0),

χ±(ξ, λ, t) = χ±(ξ − λ2t, λ, 0),

or by introducing the t-dependence in the asymptotic of the
wave function. We use the second approach.
The inverse spectral problem equation has the form:

ψ−(x, y, t, λ)−Hλχ−I
(
ψ−(x, y, t, λ), λ

)
+χ−R

(
ψ−(x, y, t, λ), λ

)
= x−λy−λ2t,

where χ−R and χ−I denote the real and imaginary parts of χ−
respectively, Hλ � denotes the Hilbert transform in λ

Hλf(λ) =
1

π

∞?
−∞

f(λ′)

λ − λ′
dλ′.
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Inverse spectral transform

In terms of the Hilbert transform analyticity of χ−(ξ, λ) ξ in the
lower half-plane is equivalent to: χ−R −Hξχ−I = 0.

Theorem

Let the spectral data χ−(ξ, λ) satisfy the following constraints:

1 χ−(ξ, λ), ∂ξχ−(ξ, λ) are di�erentiable

2

|∂ξχ−R(ξ, λ)| ≤
1

4
, |∂ξχ−I(ξ, λ)| ≤

1

4
.

3 For some C > 0

|χ−(ξ, λ)| ≤
C

1 + |λ|

Then for all x, y, t ∈ R, t ≥ 0 inverse problem equations are
uniquely solvable and ψ(x, y, t, λ) = x − λy − λ2t + ω(x, y, t, λ),
where ω(x, y, t, λ) ∈ L2(dλ) ∩ L∞(dλ).
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Inverse spectral transform

Theorem

Assume, that we have the following constraints on the inverse
spectral data: Let the spectral data χ−(ξ, λ) satisfy the following
constraints:

1 |∂ξχ−R(ξ, λ)| ≤ 1
4
tan

(
π
8

)
, |∂ξχ−I(ξ, λ)| ≤ 1

4
tan

(
π
8

)
.

2 |∂nξχ−(ξ, λ)| ≤ C
1+|λ|2+n , n = 0, 1, 2, 3.

3 |∂nξ ∂λχ−(ξ, λ)| ≤ C
1+|λ|3+n , n = 0, 1.

Then

The regularized wave functions
ωx, ωy, ωt ∈ L

2(dλ) ∩ L4(dλ), ωxx, ωxy, ωxt, ωyy ∈ L
2(dλ),

and ψ(x, y, t, λ) satisfy the Lax pair for the Pavlov equation.

The functions vx, vy, vxx, vx,y, vxt, vyy are well-de�ned and
satisfy the Pavlov equation.
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Inverse spectral transform: the small norm condition

Let us associate the following constants with the Cauchy data

B0 =

+∞∫
−∞

[
max
x∈R
|vx(x, y)|

]
dy,

B1 = exp


+∞∫
−∞

[
max
x∈R
|vxx(x, y)|

]
dy

 − 1,
B2 =


+∞∫
−∞

[
max
x∈R
|vxxx(x, y)|

]
dy

 (1 + B1)3,

B3 =


+∞∫
−∞

[
max
x∈R
|vxxx(x, y)|

]
dy

 3(1 + B1)2B2+

+


+∞∫
−∞

[
max
x∈R
|vxxxx(x, y)|

]
dy

 (1 + B1)4,
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Inverse spectral transform: the small norm condition

B̂0 =


+∞∫
−∞


√√√√√ +∞∫
−∞

|vx(x, y)|2dx

 dy
 · 1
√
1 − B1

,

B̂1 =


+∞∫
−∞


√√√√√ +∞∫
−∞

|vxx(x, y)|2dx

 dy
 · 1 + B1
√
1 − B1

.
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Inverse spectral transform: the small norm condition

Theorem

Assume that

1 v(x, y) = 0 outside the area −Dx ≤ x ≤ Dx, −Dy ≤ x ≤ Dy.

2 B0 ≤
1
4
,

3 B1 ≤
1
2
,

4 8B0 + 8B2 + 2
√
2B̂0 < π,

5 2B1 +
√
2
π (32B1 + 16B̂0) + 1

π(8B3 + 16B2
2 + 56B1 +

16B2
1)

(
B0 + 2

π [2B0 + B̂0]
)
< tan

(
π
8

)
.

Then the unique solubility conditions for the inverse problem
are ful�lled.
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Inverse spectral transform

By analogy with the standard KP equation the behavior of vt at
t = 0 requires an extra investigation.

Open question: how to characterize analogs of Manakov
conditions for KP? = How to select well-localized at all times
solutions?

Another question. What happens, if we consider the inverse
problem

ψ−(x, y, t, λ)−Hλχ−I
(
ψ−(x, y, t, λ), λ

)
+χ−R

(
ψ−(x, y, t, λ), λ

)
= x−λy−λ2t,

with inverse data such that:

χ−R −Hξχ−I , 0?

It can be shown, that we obtain the same solutions of the
Pavlov equation, but the normalization of the wave function will
be di�erent from the Jost one at y → −∞.
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