

Blowup as a driving mechanism of turbulence in shell models

Alexei A. Mailybaev

IMPA, Rio de Janeiro, Brazil Lomonosov Moscow State University, Russia

Hydrodynamic turbulence

Navier–Stokes equations

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \nu \Delta \mathbf{v} + \mathbf{f}, \quad \nabla \cdot \mathbf{v} = 0$$

Large Reynolds number

$$\operatorname{Re} = \frac{VL}{v} >> 1$$

$$\left(10^{>3}\right)$$

Fully developed turbulence

$$\text{Re} \rightarrow \infty$$

Open problems:

Existence and uniqueness of smooth solution (with and without viscosity), explanation of turbulent statistics, dissipation anomaly etc.

Kolmogorov's theory (1941) and anomaly

turbulent statistics at small scales: universal, isotropic, homogeneous

K41

Velocity moments in inertial range):

Dissipation anomaly: positive limit of dissipation rate as $\text{Re} \rightarrow \infty$ (Onsager,1946) Singular (1/3-Hölder) velocity field (Onsager 1946) and blowup problem (open) Interpretation with multifractal model (Parisi&Frisch 1985)

Shell models of turbulence

Descrete variables: $\mathbf{k} \to k_n = 2^n$, $r_n = 2^{-n}$, $\mathbf{v} \to u_n \in \mathbf{C}$

Sabra model

(L'vov, Podivilov, Pomyalov, Procaccia, Vandembroucq, 1998), modified Gledzer-Ohkitani-Yamada (GOY) model, (1973-89)

$$\frac{du_n}{dt} = i(k_{n+1}u_{n+2}u_{n+1}^* - \frac{1}{2}k_nu_{n+1}u_{n-1}^* + \frac{1}{2}k_{n-1}u_{n-1}u_{n-2}) - \nu k_n^2 u_n + f_n \qquad k_n = 2^n$$

(quadratic nonlinearity, conservation of energy and helicity, viscousity etc.)

Forcing
range
$$\frac{dU_{n}}{dt} = -\frac{1}{4}U_{n+2}U_{n+1}^{*} + \frac{1}{2}U_{n+1}U_{n-1}^{*} + 2U_{n-1}U_{n-2}, \quad U_{n} = ik_{n}u_{n}$$

Structure functions:

Anomalous scaling:

$$S_{p}(k_{n}) = \left\langle \mid u_{n} \mid^{p} \right\rangle \propto k_{n}^{-\varsigma_{p}} \qquad Sabra: \varsigma_{2} = 0.72, \ \varsigma_{3} = 1, \\ \varsigma_{4} = 1.26, \ \varsigma_{5} = 1.49 \qquad NS: \varsigma_{2} = 0.7, \ \varsigma_{3} = 1, \\ \varsigma_{4} = 1.27, \ \varsigma_{5} = 1.53 \qquad Sabra: \varsigma_{2} = 0.72, \ \varsigma_{3} = 1, \\ \varsigma_{4} = 1.27, \ \varsigma_{5} = 1.53 \qquad Sabra: \varsigma_{2} = 0.72, \ \varsigma_{3} = 1, \\ \varsigma_{4} = 1.27, \ \varsigma_{5} = 1.53 \qquad Sabra: \varsigma_{2} = 0.72, \ \varsigma_{3} = 1, \\ \varsigma_{4} = 1.27, \ \varsigma_{5} = 1.53 \qquad Sabra: \varsigma_{2} = 0.72, \ \varsigma_{3} = 1, \\ \varsigma_{4} = 1.27, \ \varsigma_{5} = 1.53 \qquad Sabra: \varsigma_{5} = 1.49 \qquad Sabra: \varsigma_{5} = 1.53 \qquad Sabra: \varsigma_{5} = 1.49 \qquad Sabra: \varsigma$$

 $r_n = 2^{-n}$

Blow-up in shell model

Viscous model: global existence and uniqueness for $(U_n) \in \ell^2$

(Constantin, Levant, Titi, 2007)

(Dombre&Gilson 1998; AM 2012, 2013)

Inviscid model: finite time blowup

Self-similar universal blowup structure (when only large scales are perturbed in I.C.)

$$u_{n}(t) = -iu_{*}k_{n}^{-y_{0}} f[u_{*}(t_{*}-t)k_{n}^{1-y_{0}}]$$
$$y_{0} = 0.281$$
$$u_{n} \propto k_{n}^{-y_{0}}, \quad t_{*} - t \propto k_{n}^{1-y_{0}}$$

0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0.5 1.5 0 1 t

Blow-up theory (inviscid model)

$$\frac{du_n}{dt} = i(k_{n+1}u_{n+2}u_{n+1}^* - \frac{1}{2}k_nu_{n+1}u_{n-1}^* + \frac{1}{2}k_{n-1}u_{n-1}u_{n-2})$$

Renormalized variables (Dombre&Gilson 1998)

$$t = t_0 + \int_0^{\tau} \exp\left[-\int_0^{\tau'} A(\tau'') d\tau''\right] d\tau', \quad u_n = -ik_n^{-1} \exp\left[-\int_0^{\tau} A(\tau') d\tau'\right] w_n$$

and renormalized system

$$\frac{dw_n}{d\tau} = N_n[w] - Aw_n$$

$$N_n[w] = -\frac{1}{4}w_{n+2}w_{n+1}^* + \frac{1}{2}w_{n+1}w_{n-1}^* + 2w_{n-1}w_{n-2}$$

$$A = \operatorname{Re}\sum_n w_n^* N_n[w] / \sum_n |w_n|^2 \implies \sum_n |w_n|^2 = const$$
Existence of solution for all times (no blowup) if $\sum_n |w_n|^2$ is finite (AM 2013)

Fixed-point attractor of Poincaré map leads to Dombre&Gilson traveling wave solution, which in turn implies universal self-similarity (AM 2013)

Blowup in other shell models: literature review

Numerical evidence of blowup with self-similar structure:

Siggia 1978 Nakano 1988 Uhlig & Eggers 1997 L'vov, Pomyalov, Procaccia 2001; L'vov 2001

Rigorous results for Desniansky-Novikov shell models (no intermittency):

Katz & Pavlovic 2005 Kiselev & Zlatos 2005 Cheskidov, Friedlander, Pavlovic 2007

Renormalization method:

Dombre & Gilson 1998 AM 2012, 2013

Instantons

Simulations for 40 shells with small viscosity, Re $\sim 10^{14}$

If small viscosity is introduced, blowup phenomena reduce to **instantons**: extreme events correlated in space and time

Instantons are identified using local maximums of shell velocities:

$$v_n = \max_t u_n(t)$$

Large part of maxima $\sim 80\%$ belong to instantons reaching the viscous range!

Anomalous scaling in terms of instantons

Viscosity moments:
$$S_{p}(k_{n}) = \langle |u_{n}|^{p} \rangle \propto k_{n}^{-\varsigma_{p}}$$
 $\Delta t_{n} \approx (k_{n}v_{n})^{-1}$
 $\langle |u_{n}|^{p} \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} |u_{n}|^{p} dt \approx \lim_{T \to \infty} \frac{1}{T} \sum_{n \text{ all instantons}} v_{n}^{p} \Delta t_{n} \approx \lim_{T \to \infty} \frac{1}{Tk_{n}} \sum_{n \text{ all instantons}} v_{n}^{p-1}$
Viscosity moments in terms of instanton amplitudes:
 $S'_{p}(k_{n}) = \lim_{T \to \infty} \frac{1}{Tk_{n}} \sum_{n \text{ all instantons}} v_{n}^{p-1}$
Inertial range scaling
 $S'_{p}(k_{n}) \propto k_{n}^{-\zeta_{p}}$
Same values of anomalous scaling exponents!

Some new interpretations of scaling exponents

Instantons are dense in space-time (n,t)

$$\zeta_0 = 0 \implies \langle |u_n|^0 \rangle \approx \lim_{T \to \infty} \frac{1}{T} \sum_{\text{all instantons}} \Delta t_n \propto const$$

(instanton lifetime is
$$\Delta t_n \approx (k_n v_n)^{-1}$$
)

Instanton creation rate

$$\zeta_{1} = 0.39 \implies$$
$$\left\langle |u_{n}|^{1} \right\rangle \approx \lim_{T \to \infty} \frac{1}{Tk_{n}} \sum_{\text{all instantons}} 1 \propto k_{n}^{-\varsigma_{1}} \implies$$

instanton creation rate $\propto k_n^{1-\varsigma_1}$

Self-similar statistics of the instanton

Exponent: *y* = 0.225 (blowup value 0.281)

Self-similarity of probability density function:

$$P_{n_0}(v) = 2^{-y\Delta n} P_{n,n_0}(2^{-y\Delta n}v)$$

 $\begin{array}{ll} P_{n,n_0}(v) \, dv & \text{ is the probability to find} \\ \text{ the maximum } v \text{ in shell } n \\ \text{ for the instanton created} \\ \text{ in shell } n_0 \end{array}$

No anomaly of scaling exponents for instantons!

Large deviation principle: derivation

Scaling rule for the moments

$$S'_{p}(k_{n}) = k_{n}^{-1} \sum_{n_{0}=0}^{n} R_{p-1}^{(n_{0})}(k_{n}) = k_{n}^{-1} \sum_{n_{0}=0}^{n} R_{p-1}^{(n_{0})}(k_{n_{0}}) 2^{-(p-1)y(n-n_{0})} \propto k_{n}^{-\varsigma_{p}}$$

$$\Rightarrow R_{p-1}^{(n)}(k_{n}) \propto k_{n}^{1-\zeta_{p}} \Rightarrow \frac{1}{T} \sum_{\substack{\text{for instantons} \\ \text{born at shell } n}} V_{n}^{p-1} = M_{n} \int V_{n}^{p-1} P_{n}(v) dv \propto k_{n}^{1-\zeta_{p}}$$

Change of variables

$$v \mapsto a = \frac{1}{n} \log_2 \frac{v}{v_*}, \quad P_n(v) \mapsto \rho_n(a) = \rho_* n M_n P_n(v)$$

$$\int 2^{npa} \rho_n(a) da \propto 2^{n(1-\zeta_p)}$$

Solving using Gärtner-Ellis theorem

$$\rho_n(a) \propto 2^{-nJ(a)} = k_n^{-J(a)} \qquad J(a) = pa - (1 - \zeta_p), \quad a = -\frac{d\zeta_p}{dp} \qquad \text{rate}$$
function

Large deviation principle: numerical validation

Instanton creation (simple model)

Instanton of amplitude $v_n = 1$ creates

 $\varphi(v)dv$

instantons of amplitude v in the same shell. Rescaled value for $v_n = v'$:

Direct computation of PDFs for instantons (using self-similarity) and of velocity moments yields the explicit anomalous exponent

Conclusions

Blowup in is linked to an attractor of the renormalized system. Such an attractor (soliton) determines universal asymptotic properties of the blowup, both for scaling and shape.

Instantons are **statistical** objects originating from blowup. They are **universal** and **self-similar** with scaling properties influenced by collective turbulent behavior: $0.281 \rightarrow 0.225$.

Large deviation principle allows analytic relation of instanton statistics (PDFs) to anomalous scaling exponents. Excellent agreement with numerical simulations.

Anomaly of scaling exponents for a shell model results from the process of **instanton creation**.

References: PRE 85 066317 (2012); PRE 86 025301 (R) (2012); PRE 87 053011 (2013); Nonlinearity 26 1105 (2013)

Blowup: scaling vs. creation in turbulence statistics

Exponents for a single blowup:

$$\zeta_p = 1 + (p-1)y_0$$

Exponents for a "gas" of instantons:

$$\zeta_p = 1 + (p-1)y - \Delta_p$$

