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© General technique
In collaboration with B.G. Konopelchenko

» Around Frobenius theorem. Integrable distributions, closed Pliicker
forms

> Introducing the spectral variable.

» How to solve? Nonlinear vector Riemann problem (or d problem)

» Polynomial case. Examples of dispersionless integrable systems

© Example: Doubrov-Ferapontov general heavenly equation
The work in progress
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Equivalent descriptions

The following objects are in one-to-one correspondence:
@ Involutive distributions

o Gauge-invariantly closed Pliicker forms
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Integrable distributions

Local coordinates x = (xo, x1, ..., Xn)-

e Distribution: k-dimensional subspace of the tangent space A, C T,
depending smoothly on x (there exists a basis of smooth vector fields).

e Involutive distribution: [A, A] C A

e Frobenius theorem: The distribution is integrable (corresponds to a
foliation) < the distribution is in involution

There are also dual formulations in terms of differential forms
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Pliicker forms
Local coordinates x = (xp, x1, ..., xy), N < co. The m-form
Qn = Z iy ... ,'mil(X)dX,'0 A C/X,'1 VANEERIAN dX,'mi1
0<ip<-+<iy—2

Coefficients satisfy Pliicker relations

m

§ : / —
(_1) 7T"O ’.m72j/7Tj0 _jv/ eedm T O
1=0

The form is defined up to a gauge. Due to Pliicker relations, it is
decomposable
Qm=wo A - ANwm-1,

defines a vector subspace in cotangent space and a distribution as a dual
object. It is also easy to construct a Pliicker form for a given distribution.

Question

What property of the Pliicker form corresponds to the involutivity of the
distribution?
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Closed Pliicker forms

Closedness equations

OTiy iy i1
[ ox;,, =0,

where the bracket [...] means antisymmetrization over all indices. For
simplicity of notations we consider a pair equations with the choice of
indices (0,1,...,m—1,m), (0,1,...,m—1,m+ 1) introducing
independent affine coordinates

k-1

a = (—1)J7 0 k—1k+1...m—1m
— (=1 kJ—l

a = (-1) TO...k—1k+1...m—1m+1)

J=m01...m-1

where k =0,...,m— 1.
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With the use of Pliicker relations, equations take the form

o)  To(ay) 0 = 0(Jay)
8Xm+2 o =0, +> =0,

s 8xm+1 =0 8X/
da da ! da da
1k 2k 1k 2k
f7+§: —X gy —=)=0, k=0,1,....,m—1.
OXm+1 OXm — <32I ox; au ox; > ' s

In red — gauge-invariant closedness equations. Coincide with the
compatibility conditions for equations on J and are equaivalent to
commutativity of corresponding vector fields.

Gauge-invariant closedness can be defined as the existence of a gauge, in
which the Pliiker form is closed in the standard sense

Proposition

Gauge-invariant closedness of the Pliicker form Q, is equivalent to the
involutiveness of the corresponding distribution
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Simple examples of closedness equations
N = 2, Qli
Ql = J(dXo — alodxl — a20dX2)

No Pliicker relations. Closedness equation

0J  0aw) _ o 9J  9(Jax)

et -0
8x1 (9X0 ’ 8X2 8X0 ’
dajp  Oaxo ‘s dayo 5 Oaxo 0
aXQ 8X1 20 (9X0 10 8X0 e
N =3, Q,:
Qb = J(dXo A dxi — ai1dxg A dxo — ar1dxg A dxz + ajodxy A dxo +

+asgdxy A dxz — (311820 — aloazl)dXQ A\ dX3)
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Closedness equations

1 1
oJ Z 0(Jaim) oJ Z d(Jarm)
6X2 + - 07 + - 07

0x
m=0 m

1
Oaix  Oax REW EY

29k 792K E - —= ) = k=0,1.
0x3 0xo + 21 X; % 0, 0,
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Introducing the spectral variable. The hierarchy

General setting

We consider (gauge invariantly) closed Pliiker form Qp, with affine
coordinates (ratios of coefficients) holomorphic with respect to A = xq in
some complex domain. This form defines a hierarchy in terms of
commuting vector fields locally holomorphic in \, the equations of the
hierarchy are the gauge-invariant closedness equations.

More specifically, we consider the forms meromorphic in the complex plane
(in the affine gauge)

This setting for m=2 can be reduced to Witham hierarchy (Krichever), for
m=3 to heavenly equation hierarchy (Takasaki) and connected Dunajski
equation hierarchy.

Important reductions are volume (or area) conservation corresponding to
closedness in the affine gauge (J = 1) and HCR reduction Q,, A dX = 0.
Most known examples correspond to the case when there exists polynomial
(or Laurent polynomial) set of affine coordinates (affine gauge).
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The case of Q; Non-generic, no hierarchy, not clear how to solve in
general.
The form

Q= J(d)\ — (Uo + )\ul)dxl — (VO + Avy + )\2V2)dX2)
leads (after reduction) to the Liouville equation
e = €7

With higher order second polynomial it is possible to get "higher Liouville
equation”

3
Pxixaxa — PxaPxixy — 562“’ =0

(Burtsev, Zakharov, Mikhailov 1987)
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The case of polynomial
Manakov-Santini hierarchy

Q = J(dANdxg — ai1dA Adxo — ax1dA A dxs + ajpdxy A dxo +
+apodxy A dx3 — (a11a20 — aipao1)dxz A dx3)
aio = up(x), a1 = ui(x)+ A,
a0 = vo(x) + Avi(x), a0 = vo(x) + Ava(x) + A2

Denoting x = x1, ¥ = x2, t = x3, one gets the Manakov-Santini system

Uxt + Uyy + u>2< + (v — vy)uXX + Vel =0,

Vit + Vyy + ViV + (0 — vy )V = 0.
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Reductions
1.The form € is closed in the standard sense in affine gauge (J=1) - dKP.
In general, the closedness in the affine gauge leads to volume-preserving

vector fields.

2.Reduction Q5 A dA = 0. In this case it is possible to consider 21 not
containing d\. Vector fields do not contain a derivative over spectral
variable. Leeds to Pavlov system and Martinez Alonso - Shabat universal
hierarchy, for general Q,, - to HCR hierarchies.
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Nonlinear Riemann-Hilbert problem

Let us consider the closed Pliicker form Q,,. Being decomposable, it can be
represented as

Qp=dVOAdUL AL dum T = JQ,,

J is some coefficient of the form in coordinates x, Q,, is a gauge-invariant
(affine) factor, WX are some functions (series in \).

Question

How to provide some simple analytic properties of the affine factor? What
kind of functions W¥ correspond to a polynomial affine factor?
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It is easy to see that 0, is invariant under diffeomorphism
(WO Wt o wmhy S Rl ol e

Let WX be holomorphic (meromorphic) inside and outside the unit circle,
having a discontinuity on it. If they satisfy a nonlinear vector
Riemann-Hilbert problem (nvRHp)

(WO Wt o wmhy = RO Wl )

then the affine factor 2, is holomorhic (meromorphic) in all the complex
plane.

nvRHp gives a tool to construct closed Pliiker forms with holomorphic
(meromorphic) affine factor, generating commuting vector fields with
holomorphic (meromorhic) coefficients
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General hierarchy for the polynomial case

We consider the formal series of the variable \

AP RN 4 ( SR S P (1)
n=1
W= TR (WO Y (e (w0) (2)
n=0 n=1

where 1 < k < m— 1, depending on m — 1 infinite sequences of
independent variables t = (t&,... th....), t& = x, A = x.

The hierarchy is generated by the relation
(JHVO A dUt AL du™ ) =0

where (---)_ denotes the projection on the part of (---) with negative
powers in A and J = 701 m—1 = det(OW )k 1=, _m_1. Generating
relation represents a polynomiality condition for affine factor of the closed
Pliicker form, it can be provided using RH problem.
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Using the Jacobian matrix

D(WO, .. .,wm1)>
Jacy) = , det(Jacg) = J,
(Jaco) < D(xo, .-y Xm—1) (Jaco)

it is possible to write Lax-Sato equation of the hierarchy inthe form

okw = Z ((Jaco) Hu(WO)"), oW, 1<k<m—1, (3)

where 1 < n < oo, W= (W0 .. Wwm1) First flows of the hierarchy read

m—1
OfW = (A0 — Y (Okip)dp — (Okt0) W)W, 1< k<m—1, (4)
p=1
where ug = \If(l) Uy —\Ilk 1<k<m-1
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A compatibility condition for any pair of linear equations (e.g., with O and
97, k # q) implies closed nonlinear N-dimensional system of PDEs for the
set of functions uy, ug, which can be written in the form

OKDqli — 040 + [0k 1, D] = (Vi io)Dg — (gtio) s,
K Dquo — OO ug + (9 0)Dgug — (Dq0) kg = 0, (5)
where i is a vector field, 0 = Zp_l upOp. For m = 3 this system after

volume-preservation reduction corresponds to the Dunajski system
(generalizing heavenly equation).
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General heavenly equation

B. Doubrov, E.V. Ferapontov, On the integrability of symplectic
Monge-Ampére equations, Journal of Geometry and Physics, 60(10),
1604—1616 (2010)

outpU3s + Buiztog + Yuiauoz = 0,

where o + 3 + v=0, subscripts denote partial derivatives.
Lax pair: (vector fields X1, X» in involution)

X1 = w3401 — u1304 + YA (u3401 — u1403),
Xo = up304 — 3402 + BN(u3402 — u2403).
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Let us consider 2-form depending on the spectral parameter
Q= Zwijdx,- A dx;,
where 1 < j,j < 4,
1 1
wii(A,x) = — wii(x),

wij(x) is symmetric (here subscripts don't suggest differentiation).
Pl ucker conditions for 2-forms are equivalent to the relation

QAQ =0,

which in our case gives one equation
Wo3W14 — W13w2s + wiowzs = 0,
and for w;j(x) we have
(A3 = A2)(Ag — Ar)waswig — (A3 — A1)(Aa — A2)wizwag
+(A2 — A1)(Aa — A3)wiowzs =0

(no spectral parameter!)
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Closedness conditions
Let us also suggest that Q is closed, wy;j ) = 0. For w;;(x) we have

O1woz — O3wip | Oowiz — O1woz | O3wip — owns

A— Ao A— A3 A— A =0
O1woq — O3wip  Oowig — O1wag  O3wip — Oowig 0
A— Ao A— M\ A— A\ ’
O1wag — Ozwig ~ Oowiz — O1wag  O3wig — Oowis 0
A— M\ A— A3 A— A\ ’
O1woz — O3woq | Opwsq — O1waz | O3waq — Oowss 0
A— Ao A— A3 A— M\ '

These equations imply the existence of the potential
O : wij = @7,']

and for arbitrary potential © w;; = © j; satisfy the closedness equations.
The constants in wj; do not affect the closedness, correspond to the term
in © quadratic in x; (> cjjxix;).
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Proposition

Let us consider 2-form depending on the spectral parameter

1 1
e Z <>\ — A A— )\j) wii(x)dx; A dx;,

where 1 < i, j < 4, wj(x) is symmetric. The conditions

QAQ =0,
dQ=0

are equivalent to the equation (wj; = © j;)

(A3 = A2)( A4 — A1)©.230 14 — (A3 — A1)(Aa — A2)©.130 24
+(A2 = A1)(Ag — A3)0,120 34 = 0.
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A limit to the first heavenly equation

General heavenly equation plays a role of generating equation for the
heavenly equation hierarchy (Takasaki).
Let us consider a limit

)\1,)\2—)3, )\3,)\4—)1‘)

for the potential © of the form

X1X0 X3Xg ~

92612)\1_)\2+C34)\3_)\4+@

General heavenly equation in this limit gives Plebanski first heavenly
equation in the form

~ ~ ~ ~ C12C
©,130 24 — © 230 14 = ﬁ-

Corresponding 2-form Q is also obtained in this limit.
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The Lax pair: vector fields in involution

General vector fields correspond to projectively closed €2, for Q closed in
the standard sense the basic fields can be chosen divergence-free

1 1 1 1
Ui = — ;0 — e
ik (A—A; A—M)W1k+<A—Aj A—Aé)wk

+ o Wi 0;
A=A A\ ) HS

Linear span is 2-dimensional (due to Pliiker relation), arbitrary pair of
independent Ujj can be taken as a Lax pair. Divergence-free condition
implies the existence of potential © : w;; = © j;.
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In equivalent form, taking Ujc — (A — X\;)(A — Aj)(/ = Ak) Ujji, we get
polynomial fields of the first order in spectral parameter:
U,'jk = (A — )\j)W,'j(/\ — Ak)Ok + ()\j — )\k)ij()\ —\i)oi +
()\k — )\,’)Wk,'()\ — )\k)aj.
The divergence-free condition gives w;; = © j;, and after Mdbius

transformation it is possible to get the Lax pair in Doubrov-Ferapontov
form.
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Dual space of one-forms

Due to Pliiker relations, Q can be represented as

Q=1A o

Space of 1-forms (Grassmannian point in cotangent space)

1 1 1 1
= - i dxi - jdx;
% (A—M A—&)Wﬁx+<A—N A—&)Wﬁ&+

1 — L Wk dX|
A=A A=A, ) P

It is possible to the basis of polynomial forms of the first order in A, e.g.

P3a = (A = M)A — A3)(\ — Aa)(Wiahs — wi3ha)
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Gindikin construction

S.G. Gindikin, Some solutions of the selfdual Einstein equations, Func.
Anal. and Appl. (in Russian),19(3), 58-60 (1985)
citation:

Construction of complex solutions of self-dual Einstein equations is
equivalent to construction of quadratic (in t) bundles of holomorphic
two-forms F(t) = t?F, 4 tFy + Fo, t € C, on the four-dimensional complex
manifold M, satisfying the conditions

F(t)yAF(t) = 0 forallt;
dF(t) = 0
F(t)ANF(s) # 0 fort#s.
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... Due to the first condition F(t) can be represented as

F(t) = (¢o + to1) A (Yo + tih1),

where ¢;, 1; are 1-forms. Then the third condition guarantees
non-degeneracy of the metrics

g = ¢o1 — P1to,
and the second condition implies that it satisfies self-dual Einstein
equations.
The form

FO) = (= A1) = A2)(A — A3)(A — Ag)Q2

is quadratic in A and satisfies the required properties, the metrics can be
constructed explicitly.
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O-dressing scheme

Q can be represented in a form
Q = dS' A dS?.

Two properties of Q are now identically satisfied (it is Pliiker and closed),
now the problem is to construct S, S? to get Q with the necessary
analytic properties.

L.V. Bogdanov, B.G. Konopelchenko, On the d-dressing method applicable
to heavenly equation, Physics Letters A, Volume 345, Issues 1-3, 26
September 2005, Pages 137-143

Nonlinear vector 0 problem in some region G,

ast = W2(2,2;51,52),
9S? = —Wi(z,z, S, 5%

LVB (Moscow) Zakharov 75 20 /33



This problem provides analyticity of the form Q = dS! A dS? in G.
We search for solutions of the form

S'=5+5,

where §' are regular in C, analytic outside G and decrease at infinity, 56
are analytic in G (normalization),

C1Xk C2Xk
51 — k 52 — k )
0 A= T° E:A—Ak

Then the form Q has the required analytic structure.
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Formula for ©

The O problem can be obtained by variation of the action
- L // (52551 — W(z,z,S" 52)) dz A dz (6)
27"" G b b ) )
where one should consider independent variations of S, possessing required

analytic properties, keeping S fixed.

Theorem

The function

o) = 3 [ [ (95 + ()35 (x
_W(z7z751(x)752( )))dZ/\dz’

i.e., the action evaluated on the solution of the O problem plus a term

quadratic in x;, is a solution of the Doubrov-Ferapontov general heavenly
equation.
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Multidimesional hyper-Kahler case

The structure of Q the same,

QA AQ =
dQ

Closedness implies the existence of ©.
2N-dimensional homogeneous of degree N "general hyper-K&hler equation"

Zei1~-~i2N()\il = Ai) X X (Aigy_y = Aigg )iy X v+ X O iy yipy =0,

1 < iy < 2N. Generating equation for multidimensional hyper-Kahler
hierarchy (Takasaki).
Q can be represented as

Q=S"AS? ... 4 52N=3 \ g2N=2
Similar to the heavenly case: d-dressing, formula for ©.
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THANK YOU!
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