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Introduction. Water waves. Problem formulation.

Water waves. Problem formulation.

Let us consider a potential flow of an ideal fluid of infinite depth with a
free surface. We use standard notations for velocity potential
φ(~r , z , t), ~r = (x , y); ~v = ∇φ and surface elevation η(~r , t).

wavelength λ

η (x,y,t)

x

Steepness of the surface µ =
√

〈|∇η(~r , t)|2〉 ≃ 0.1 — average slope of the
surface.
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Introduction. Water waves. Problem formulation.

Energy of the system

Fluid flow is incompressible (∇~v) = ∆φ = 0. The total energy of the
system can be presented in the following form

H = T + U,

Kinetic energy:

T =
1

2

∫

d
2r

η
∫

−∞

(∇φ)2dz ,

Potential energy due to gravity:

U =
1

2
g

∫

η2
d

2r ,

here g is the gravity acceleration.
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Introduction. Water waves. Problem formulation.

Hamiltonian expansion.

It was shown by Zakharov (1966) that under these assumptions the fluid is
a Hamiltonian system

∂η

∂t
=
δH

δψ
,

∂ψ

∂t
= −δH

δη
,

where ψ = φ(~r , η(~r , t), t) is a velocity potential on the surface of the fluid.
In order to calculate the value of ψ we have to solve the Laplace equation
in the domain with varying surface η. One can simplify the situation, using
the expansion of the Hamiltonian in powers of ”steepness” (here ∆ = ∇2

and k̂ =
√
−∆)

H =
1

2

∫

(

gη2 + ψk̂ψ
)

d
2r+

+
1

2

∫

η
[

|∇ψ|2 − (k̂ψ)2
]

d
2r+

+
1

2

∫

η(k̂ψ)
[

k̂(η(k̂ψ)) + η∆ψ
]

d
2r .
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Introduction. Water waves. Problem formulation.

Dynamical equations.

In this case dynamical equations acquire the following form

η̇ = k̂ψ − (∇(η∇ψ)) − k̂[ηk̂ψ]+

+k̂(ηk̂ [ηk̂ψ]) + 1
2
∆[η2k̂ψ] + 1

2
k̂[η2∆ψ]− D~r ,

ψ̇ = −gη − 1
2

[

(∇ψ)2 − (k̂ψ)2
]

−
−[k̂ψ]k̂ [ηk̂ψ]− [ηk̂ψ]∆ψ − D~r + F~r .

Here D~r is some artificial damping term used to provide dissipation at small
scales; F~r is a pumping term corresponding to external force (having in
mind wind blow, for example). Let us introduce Fourier transform

ψ~k
=

1

2π

∫

ψ~re
i~k~r

d
2r , η~k =

1

2π

∫

η~re
i~k~r

d
2r .
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Introduction. Water waves. Problem formulation.

Canonical variables.

ψ(~r , t) and η(~r , t) are real valued functions, ⇒ ψ~k
= ψ∗

−
~k
, η~k = η∗

−
~k

—

Hermitian symmetry.
It is convenient to introduce the canonical (normal) variables a~k as shown
below

a~k =

√

ωk

2k
η~k + i

√

k

2ωk

ψ~k
, where ωk =

√

gk .

ȧ~k = −i
δH

δa∗~k

— Hamiltonian equations,

a~k — is an elementary excitation (plane wave).
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Introduction. Water waves. Problem formulation.

Resonant conditions

Let us get rid of the linear part:

(a~k1
a~k2

a∗~k0
+ a∗~k1

a∗~k2
a~k0

)δ(~k1 + ~k2 − ~k0)

a~k(t) = A~k
(t)eiωk t ⇒ a∗~k0

a~k1
a~k2

= A∗

~k0
A~k1

A~k2
e
i(ωk0

−ωk1
−ωk2

)t

Resonant conditions for 3-waves interaction (decaying and merging):

ωk0
= ωk1

+ ωk2
, ~k0 = ~k1 + ~k2.

Resonant conditions for 4-waves interaction (two into two scattering):

ωk1
+ ωk2

= ωk3
+ ωk4

, ~k1 + ~k2 = ~k3 + ~k4. (1)
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Numerical results 3-wave decay theory.

3-waves interaction. Capillary waves.

In the case of capillary waves on the surface of deep fluid the dispersion is
given by

ωk =
√
σk3, (2)

here σ is the surface tension coefficient.
Let us consider three-waves process, corresponding to decay and merging
of waves. One can get resonance condition

ωk1
+ ωk2

= ωk0
, ~k1 + ~k2 = ~k0. (3)

To be more specific let us consider decay of wave A~k0
on two waves A~k1

and A~k2
.
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Numerical results 3-wave decay theory.

Resonant manifold for decay of initial capillary wave with

k0 = 68.

-10  0  10  20  30  40  50  60  70  80
kx

-30

-20

-10

 0

 10

 20

 30

k y

A. O. Korotkevich In collaboration with: A. I. Dyachenko and V. E. Zakharov (UNM,LandauITP)Waves’ Instabilities. . . Zakharov-75 9 / 59



Numerical results 3-wave decay theory.

Resonant manifold for decay of initial capillary wave with

k0 = 68. Zoom.
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Numerical results 3-wave decay theory.

Governing system of equations.

Dynamical equations lead to the system of ordinary differential equations

Ȧ~k0
= − i

2

2π

LxLy
C

~k0
~k1

~k2
A~k1

A~k2
e
iΩ

k0
k1k2

t
,

Ȧ~k1
= −i

2π

LxLy
C

~k0
~k1

~k2
A∗

~k2
A~k0

e
−iΩ

k0
k1k2

t
,

Ȧ~k2
= −i

2π

LxLy
C

~k0
~k1

~k2
A∗

~k1
A~k0

e
−iΩ

k0
k1k2

t
,

(4)

Here Ωk0
k1k2

= ωk1
+ ωk2

− ωk0
is a mismatch of frequencies.
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Numerical results 3-wave decay theory.

Growth rate and conditions.

Let us suppose A~k1
,A~k2

are small with respect to decaying wave
∣

∣

∣
A~k0

∣

∣

∣
≫ max(|A~k1

|, |A~k2
|) at the initial moment of time t = 0. Then in the

beginning of harmonics growth equations (4) can be linearized. In
assumption (A~k0

≃ const) we have growing (if several conditions are
fulfilled) solution

A~k1,2
(t) = A~k1,2

(0)eλt , (5)

here

λ = − i

2
Ωk0
k1k2

+

√

∣

∣

∣

∣

2π

LxLy
C

~k0
~k1

~k2
A~k0

∣

∣

∣

∣

2

−
(

1

2
Ωk0
k1k2

)2

. (6)

One can see, that if condition
∣

∣

∣

∣

2π

LxLy
C

~k0
~k1

~k2
A~k0

∣

∣

∣

∣

>

∣

∣

∣

∣

1

2
Ωk0
k1k2

∣

∣

∣

∣

(7)

is fulfilled, in the vicinity of resonant curve harmonics grow exponentially.
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Numerical results Capillary waves.

Simulation setup.

System of dynamical equations was simulated in the domain Lx = Ly = 2π.
Surface tension coefficient σ = 1. Number of grid points was 512 × 512. A
monochromatic wave of amplitude |a~k0

| = 4 × 10−3 was taken as initial

conditions. Its wave number vector ~k0 = (0; 68). All other harmonics were
of amplitude |a~k | ∼ 10−12 and with random phase.
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Numerical results Capillary waves.

Cappilary waves. Matrix element.
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Numerical results Capillary waves.

Cappilary waves. Matrix element.
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Numerical results Capillary waves.

k0 = 68. T = 0.
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Numerical results Capillary waves.

k0 = 68. T = 318T0.
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Numerical results Capillary waves.

k0 = 68. T = 318T0.
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Numerical results Capillary waves.

k0 = 68. T = 794T0.
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Numerical results Capillary waves.

k0 = 68. T = 1112T0.
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Numerical results Capillary waves.

k0 = 68. T = 1589T0.
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Numerical results Capillary waves.

k0 = 68. T = 144488T0.
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Numerical results Capillary waves.

k0 = 68. T = 144488T0.
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Numerical results Capillary waves.

k0 = 68. T = 144488T0.

-10  0  10  20  30  40  50  60  70  80
kx

-30

-20

-10

 0

 10

 20

 30

k y

10-12

10-11

10-10

10-9

10-8

10-7

10-6

A. O. Korotkevich In collaboration with: A. I. Dyachenko and V. E. Zakharov (UNM,LandauITP)Waves’ Instabilities. . . Zakharov-75 24 / 59



Numerical results 4-waves interaction theory.

4-waves interaction. Gravity waves.

In the case of gravity waves on the surface of deep fluid the dispersion is
the following

ωk =
√

gk , (8)

here g is a gravity acceleration. Here and further let us suppose g = 1.
In this case dispersion is of nondecay type have no real nontrivial solutions,
and main process is four-wave scattering. Therefore one can make a
substitution to eliminate third order terms corresponding to the decay
process. This is the reason why we have to use Hamiltonian expansion up
to forth order in the case of gravity waves.
Let us consider the same initial conditions as in the case of monochromatic
capillary wave decay, i.e. one monochromatic wave and random phase noise
of small amplitude.
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Numerical results 4-waves interaction theory.

Gravity waves. Resonant condition.

The main processes involve large amplitude of initial wave most times. In
this case one wave to three and invert processes are much weaker than
scattering two waves with the same amplitude and the same wave vector to
two other waves.

1k

2k k 4

k 3

Resonance conditions for such process (~k3 = ~k4 = ~k0)

ωk1
+ ωk2

= 2ωk0
, ~k1 + ~k2 = 2~k0. (9)
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Numerical results 4-waves interaction theory.

Resonant manifold for scattering of initial gravity wave with

k0 = 30 (Phillips curve).
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Numerical results 4-waves interaction theory.

Resonant manifold for scattering of initial gravity wave with

k0 = 30. Zoom.
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Numerical results Gravity waves.

Gravity waves. Matrix element.
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Numerical results Gravity waves.

Gravity waves. Matrix element.
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Numerical results Gravity waves.

k0 = 30. T = 0.
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Numerical results Gravity waves.

k0 = 30. T = 43T0.
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Numerical results Gravity waves.

k0 = 30. T = 87T0.
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Numerical results Gravity waves.

k0 = 30. T = 87T0.
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Numerical results Gravity waves.

k0 = 30. T = 174T0.
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Numerical results Gravity waves.

k0 = 30. T = 261T0.
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Numerical results Gravity waves.

k0 = 30. T = 348T0.
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Numerical results Gravity waves.

k0 = 30. T = 435T0.
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Numerical results Gravity waves.

k0 = 30. T = 1204T0.

A. O. Korotkevich In collaboration with: A. I. Dyachenko and V. E. Zakharov (UNM,LandauITP)Waves’ Instabilities. . . Zakharov-75 39 / 59



Numerical results Gravity waves.

k0 = 30. T = 1204T0.
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Numerical results Standing wave instability. Theory.

Standing wave instability, general case.

Very interesting and instructive is the case of interaction of two waves a~k0

and a
−
~k0

in the presence of a 4-waves interaction. In this case resulting

waves ~k3 and ~k4 has to obey the following relation

~k0 + (−~k0) = ~0 = ~k3 + ~k4,⇒ ~k3 = −~k4.

If we have a dispersion relation depending only on the magnitude of the
wavevector, the condition on the resonance of the frequencies gives us

2ωk0
= 2ωk3

,

which in case of capillary and gravity waves results in |~k3| = |~k0|, with
arbitrary direction.
In other words resonant curve is a circle with the centre at zero wave
number vector and of radius |~k0|. It is clear that such a process is general
for any isotropic dispersion.
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Numerical results Standing capillary wave.

k0 = 68. T = 0.
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Numerical results Standing capillary wave.

k0 = 68. T = 14T0.
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Numerical results Standing capillary wave.

k0 = 68. T = 57T0.
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Numerical results Standing capillary wave.

k0 = 68. T = 283T0.
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Numerical results Standing capillary wave.

k0 = 68. T = 283T0.
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Numerical results Standing capillary wave.

k0 = 68. T = 509T0.
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Numerical results Standing capillary wave.

k0 = 68. T = 1018T0.
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Numerical results Standing capillary wave.

k0 = 68. T = 2587T0.
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Numerical results Standing gravity wave.

k0 = 30. T = 0.
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Numerical results Standing gravity wave.

k0 = 30. T = 116T0.
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Numerical results Standing gravity wave.

k0 = 30. T = 116T0.
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Numerical results Standing gravity wave.

k0 = 30. T = 232T0.
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Numerical results Standing gravity wave.

k0 = 30. T = 348T0.
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Numerical results Standing gravity wave.

k0 = 30. T = 463T0.
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Numerical results Standing gravity wave.

k0 = 30. T = 580T0.
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Conclusion.

Results and open questions.

Performed simulation of resonant interactions on the discrete grid.

Observed stochastization of the wave field.

New type of instability in the presence of 4-wave interaction.

Possible way of isotropic excitation in wave-tank experiments.
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