Self-similarity of wind input terms

and

magic numbers

Andrei Pushkarev, Vladimir Zakharov

Lebedev Physical Institute Novosibirsk State University University of Arizona

,

1. Group scientific motivation

- 2. Self-similarity analysis of HE to find new wind input term
- 3. Different physical framework
- 4. Different input term check for nonlinear effects, such as "magic numbers" and ZF spectrum $\mathcal{E}(\omega) = C \cdot \omega^{-4}$
- 5. Show identity of limited fetch numerical results and experimental observations for specific choice of wind input

Motivation

1. Try to get rid of tuning knobs in the model

- Properly simulate "primitive", but realizable in nature situations, like deep water limited fetch with permanent wind
- 3. We we suspecting that the truth might be hidden in complex nonlinear properties of HE

Correlation of equilibrium range coefficient β with $(u_{\lambda}^2 c_p)^{1/3}/g^{1/2}$

Self-similarity analysis

Kinetic (Hasselmann) equation:

$$\frac{\partial \varepsilon}{\partial t} + \frac{\partial \omega_k}{\partial \vec{k}} \frac{\partial \varepsilon}{\partial \vec{r}} = S_{nl} + S_{in} + S_{diss}$$

Duration limited statement

$$\frac{\partial \varepsilon}{\partial t} = S_{nl} + S_{wind} + S_{diss}$$

Limited fetch statement

$$\frac{\partial \varepsilon}{\partial t} + \frac{g}{2\omega} \cos \theta \frac{\partial \varepsilon}{\partial x} = S_{nl} + S_{wind} + S_{diss}$$

 $\epsilon = \epsilon(\omega, \phi, t)$

$$S_{nl} = \omega \left(\frac{\omega^5 \varepsilon}{g^2}\right)^2 \varepsilon$$

$$S_{wind} = \alpha \omega^{s+1} f(\phi) \epsilon$$

Duration limited self-similar solution

$$\varepsilon = t^{p+q} F(\omega t^q) \qquad \qquad 9q - 2p = 1$$

If
$$S_{in} = \gamma \varepsilon \propto \omega^{s+1}$$
 then

$$s = \frac{4}{3}$$
 $q = \frac{3}{7}$ $p = \frac{10}{7}$

published in

Zakharov, Resio, Pushkarev, arxiv, 2013

Fetch limited self-similar solution

$$\varepsilon = x^{p+q} F(\omega x^q) \qquad \qquad 10q - 2p = 1$$

If
$$S_{in} = \gamma \varepsilon \propto \omega^{s+1}$$
 then
 $s = \frac{4}{3}$ $q = \frac{3}{10}$ $p = 1$

published in

Zakharov, Resio, Pushkarev, arxiv, 2013

ZRP model

$$f(\theta) = \begin{cases} \cos^2 \theta & \text{for - } \pi/2 \le \theta \le \pi/2 \\ 0 & \text{otherwise} \end{cases}$$

Similar to Resio, Perrie, 1989

 $\omega = \omega_0 \chi^{-q}$

Different physical framework

1. No need for spectral maximum peak dissipation!

2. Only high-frequency implicit ~ f^{-5} dissipation starting at $f = 1.1 \,\text{Hz}$ (Resio, Long 2007)

Why we don't need spectral maximum dissipation?

Because HF dissipation works as a cigar cutter !

Real space

Fourier space

- Radar "troubled" by breaking waves (sea spikes)
 - Review (of one: UMass FOPAIR)
 - NRL coherent radar analysis (tower)
 - NRL InSAR analysis (airborne)
- Key results
 - Breaking velocity: 2.7±0.7 m/s (U₁₀<~15m/s, c_p similar range)
 - Swell influence
 - Decreases/broadens breaking lengthscale
 - Decreases breaking threshold

Really, really short scale waves: breaking and roughness spectrum

Normalized wind input function as a function of frequency and angle in polar coordinates.

Alternative normalized wind input function similar to Tolman and Chalikov, 1996

Different wind input terms check against nonlinear evidence

ZRP model

Dissipation

Dimensionless energy

Energy index

Dimensionless frequency

Experiment	$\widetilde{\varepsilon}_0 \cdot 10^7$	р	$\widetilde{\omega}_0$	q
Black Sea (Babanin & Soloviev 1998b)	4.41	0.89	15.14	0.275
Walsh et al. (1989) US coast	1.86	1.0	14.45	0.29
Kahma & Calkoen (1992) unstable	5.4	0.94	14.2	0.28
Kahma & Calkoen (1992) stable	9.3	0.76	12.0	0.24
Kahma & Pettersson (1994)	5.3	0.93	12.66	0.28
JONSWAP by Davidan (1980)	4.363	1.0	16.02	0.28
JONSWAP by Phillips (1977)	2.6	1.0	11.18	0.25
Kahma & Calkoen (1992) composite	5.2	0.9	13.7	0.27
Kahma (1981, 1986) rapid growth	3.6	1.0	20	0.33
Kahma (1986) average growth	2.0	1.0	22	0.33
Donelan <i>et al.</i> (1992) St Claire	1.7	1.0	22.62	0.33
Ross (1978), Atlantic, stable	1.2	1.1	11.94	0.27
Liu & Ross (1980), Michigan, unstable	0.68	1.1	12.88	0.27
JONSWAP (Hasselmann <i>et al.</i> 1973)	1.6	1.0	21.99	0.33
Mitsuyasu <i>et al.</i> (1971)	2.89	1.008	19.72	0.33
ZRP numerics	2.9	1.0	21.36	0.3

Exponents and pre-exponents of wind-wave growth in fetch-limited experiments.

Adopted from Badulin, Babanin, Zakharov, Resio 2007

Chalikov-Tolman model (no damping)

Gamma 0.02 0.01 0.00 -0.01 _0.02 -0.03 _0.04 5.5 1.0 ٤ 0.5

Solid line - numerical experiment; dashed line - fit by $2.9 \cdot 10^{-7} \cdot \frac{xg}{U^2}$

Dimensionless frequency

Magic number 10q-2p

Spectral index

WAM no damping (Snyder)

Dimensionless energy

Dimensionless frequency

Spectral index

WAM with damping

Solid line - numerical experiment; dashed line - fit by $2.9 \cdot 10^{-7} \cdot \frac{xg}{U^2}$

Energy index *p*

Dimensionless frequency

dash-dotted line: power -5: dotted line: power -4: dashed line: power -11/3

Spectral index

CONCLUSION

- **ZRP** forcing term is in the agreement with at least 15 fetch-limited experimental observations
- Many source terms and experimental observations exhibit similar nonlinear effects in the form of Zakharov-Filonenko spectra and "magic numbers" -- evidence of (quazi) self-similarity
- There is *no need* to use spectral maximum damping **Occam's razor** principle
- It is necessary to use correct wind input exact solution of HE

TO-DO'S:

- Check as a much as possible existing wind input terms against ZF spectra, magic numbers, correspondence to experiments.
- Use self-similarity characteristics as selection tools for wind input terms
- Try to explain the difference in self-similarity parameters for stable and unstable atmosphere cases