|
||||
New reductions of Gauss-Codazzi equations in three-dimensional Euclidean space to the sixth Painlev\'e equation
Date/Time: 15:10 04-Aug-2014
Abstract:
The Gauss-Codazzi equations govern the geometry of surfaces in R${}^n$.
In 1897, Hazzi\-dakis found a reduction to a codimension three P6 equation in the case $n=3$. Our motivation is to find a reduction to the full (codimension zero) P6. Since the Gauss-Codazzi equations are underdetermined (three equations in four unknowns), we first restrict them to a determined system and compute its Lie point symmetries. This allows us to find three more reductions to P6, with respective codimensions three, two, two. %----- End of MAIN TEXT ---------------------------------------------- \vspace{5cm} % {\bf References:} % \begin{list}{}{\setlength{\topsep}{0mm}\setlength{\itemsep}{0mm} \setlength{\parsep}{0mm}} %----- REFERENCES -------------------------------------------------- \item[1.] %\bibitem{BE2000} A.I.~Bobenko and U.~Eitner, Painlev\'e equations in differential geometry of surfaces, %120 pages, Lecture Notes in Math.~{\bf 1753} (2000). % (Springer, Berlin, 2000). %http://www-sfb288.math.tu-berlin.de \item[2.] %\bibitem{CGS1995} J.L.~Cie\'sli\'nski, P.~Goldstein and A.~Sym, %Isothermic surfaces in E${}^3$ as soliton surfaces, Phys.~Lett.~A {\bf 205} (1995) 37--43. \item[3.] %\bibitem{CMBook} R.~Conte and M.~Musette, \textit{The Painlev\'e handbook} (Springer, Berlin, 2008). Russian translation (RCD, Moscow, 2011). % http://www.springer.com/physics/book/978-1-4020-8490-4 \item[4.] J.N.~Hazzidakis, %Biegung mit Erhaltung der Hauptkr\"ummungsradien, Journal f\"ur die reine und angewandte Mathematik, {\bf 117} (1897) 42?56. %--------------------------------------------------------------------- \end{list} Authors
(no additional information)(no additional information) |
||||
© 2012, Landau Institute for Theoretical Physics RAS www.itp.ac.ru
Contact webmaster |