VII-th International Conference "SOLITONS, COLLAPSES AND TURBULENCE: Achievements, Developments and Perspectives" (SCT-14) in honor of Vladimir Zakharov's 75th birthday
August, 04-08, 2014
Chernogolovka, Russia

New reductions of Gauss-Codazzi equations in three-dimensional Euclidean space to the sixth Painlev\'e equation
Date/Time: 15:10 04-Aug-2014
The Gauss-Codazzi equations govern the geometry of surfaces in R${}^n$.
In 1897, Hazzi\-dakis found a reduction to a codimension three P6 equation in the case $n=3$.
Our motivation is to find a reduction to the full (codimension zero) P6.
Since the Gauss-Codazzi equations are underdetermined (three equations in four unknowns), we first restrict them to a determined system and compute its Lie point symmetries.
This allows us to find three more reductions to P6, with respective codimensions three, two, two.

%----- End of MAIN TEXT ----------------------------------------------

{\bf References:}
%----- REFERENCES --------------------------------------------------
A.I.~Bobenko and U.~Eitner,
Painlev\'e equations in differential geometry of surfaces,
%120 pages,
Lecture Notes in Math.~{\bf 1753} (2000). % (Springer, Berlin, 2000).

J.L.~Cie\'sli\'nski, P.~Goldstein and A.~Sym,
%Isothermic surfaces in E${}^3$ as soliton surfaces,
Phys.~Lett.~A {\bf 205} (1995) 37--43.

R.~Conte and M.~Musette,
\textit{The Painlev\'e handbook} (Springer, Berlin, 2008).
Russian translation (RCD, Moscow, 2011).

%Biegung mit Erhaltung der Hauptkr\"ummungsradien,
Journal f\"ur die reine und angewandte Mathematik,
{\bf 117} (1897) 42?56.


Conte Robert (Presenter)
(no additional information)

Grundland A M
(no additional information)

 © 2012, Landau Institute for Theoretical Physics RAS
Contact webmaster