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Outline

According to “folk” tradition ...
@ Strong turbulence = Large amplitudes

@ Wave turbulence theory = Limit of infinitesimally small amplitudes

However, our research (PRL, 2014, in press) establishes the following: ! 2

'http://arxiv.org/abs/1404.7833
%http:/ /arxiv.org/abs/1305.5517
M D Bustamante (UCD) SCT-2014, Chernogolovka, Russia August 4th 2014 3/27



Outline

According to “folk” tradition ...
@ Strong turbulence = Large amplitudes

@ Wave turbulence theory = Limit of infinitesimally small amplitudes

However, our research (PRL, 2014, in press) establishes the following: 12

@ Turbulence is stronger at intermediate amplitudes

'http://arxiv.org/abs/1404.7833
%http:/ /arxiv.org/abs/1305.5517
M D Bustamante (UCD) SCT-2014, Chernogolovka, Russia August 4th 2014 3/27



Outline

According to “folk” tradition ...
@ Strong turbulence = Large amplitudes

@ Wave turbulence theory = Limit of infinitesimally small amplitudes

However, our research (PRL, 2014, in press) establishes the following: 12

@ Turbulence is stronger at intermediate amplitudes

@ Wave turbulence theory can be developed at intermediate amplitudes

'http://arxiv.org/abs/1404.7833
%http:/ /arxiv.org/abs/1305.5517
M D Bustamante (UCD) SCT-2014, Chernogolovka, Russia August 4th 2014 3/27



Outline

According to “folk” tradition ...
@ Strong turbulence = Large amplitudes

@ Wave turbulence theory = Limit of infinitesimally small amplitudes

However, our research (PRL, 2014, in press) establishes the following: 12

@ Turbulence is stronger at intermediate amplitudes
@ Wave turbulence theory can be developed at intermediate amplitudes

@ A new turbulence-generating mechanism is revealed:
Precession resonance —> strong energy transfers across scales

'http://arxiv.org/abs/1404.7833
*http://arxiv.org/abs/1305.5517
M D Bustamante (UCD) SCT-2014, Chernogolovka, Russia August 4th 2014 3/27
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According to “folk” tradition ...
@ Strong turbulence = Large amplitudes

@ Wave turbulence theory = Limit of infinitesimally small amplitudes

However, our research (PRL, 2014, in press) establishes the following: 12

@ Turbulence is stronger at intermediate amplitudes
@ Wave turbulence theory can be developed at intermediate amplitudes

@ A new turbulence-generating mechanism is revealed:
Precession resonance —> strong energy transfers across scales

@ We provide abundant evidence of this in a nonlinear PDE:
Charney-Hasegawa-Mima equation

http://arxiv.org/abs/1404.7833
*http://arxiv.org/abs/1305.5517
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Introduction 1/2: Turbulence in Wave Systems

Many physical systems consist of nonlinearly interacting oscillations or
waves:
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Nonlinear photonics

Gravity water waves in oceans

Rossby-Haurwitz planetary waves in the atmosphere

Drift waves in fusion plasmas, etc.
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Introduction 1/2: Turbulence in Wave Systems

Many physical systems consist of nonlinearly interacting oscillations or
waves:

@ Nonlinear circuits in electrical power systems
High-intensity lasers

Nonlinear photonics

Gravity water waves in oceans

Rossby-Haurwitz planetary waves in the atmosphere

Drift waves in fusion plasmas, etc.

These systems are characterised by:
@ Extreme events, localised in space and time
@ Strong nonlinear energy exchanges
@ Out-of-equilibrium dynamics: chaos & turbulence
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Introduction 2/2: Classical Wave Turbulence Theory

@ One of the few consistent theories that deal with nonlinear exchanges

o Widely used in numerical prediction of ocean waves 3

3Gerbrand J Komen, Luigi Cavaleri, Mark Donelan, Klaus Hasselmann,
S Hasselmann, and PAEM Janssen, Dynamics and modelling of ocean waves, Cambridge
University Press, 1996
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Introduction 2/2: Classical Wave Turbulence Theory

One of the few consistent theories that deal with nonlinear exchanges
Widely used in numerical prediction of ocean waves 3

Produces mainly statistical predictions

Makes ad-hoc hypotheses on correlations of the evolving quantities

Requires infinitesimally small amplitudes

Requires infinitely extended spatial domains

In real-life systems, hypotheses of classical wave turbulence do not hold:
@ Amplitudes of the carrying fields are not infinitesimally small
@ Spatial domains have a finite size

@ Linear wave timescales are comparable with nonlinear oscillations’
timescales

3Gerbrand J Komen, Luigi Cavaleri, Mark Donelan, Klaus Hasselmann,
S Hasselmann, and PAEM Janssen, Dynamics and modelling of ocean waves, Cambridge
University Press, 1996
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Discrete and Mesoscopic Wave Turbulence:
A theory in development # ° ©

@ Applications in nonlinear PDEs: Classical fluids — Quantum fluids —
Nonlinear optics — Magneto-hydrodynamics — etc.

*V.S. L'Vov and S. Nazarenko, Discrete and mesoscopic regimes of finite-size wave
turbulence, Phys. Rev. E 82 (2010), 056322-1

V. E. Zakharov, Korotkevich A. O., A. N. Pushkarev, and Dyachenko A. |., Mesoscopic
wave turbulence, JETP Letters 82 (2005), 487-491

5S. V. Nazarenko, Sandpile behavior in discrete water-wave turbulence, J. Stat. Mech.
Theor. Exp. (2006), L02002
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@ Applications in nonlinear PDEs: Classical fluids — Quantum fluids —
Nonlinear optics — Magneto-hydrodynamics — etc.

@ We focus on the Charney-Hasegawa-Mima (CHM) equation, a PDE
governing Rossby waves (atmosphere) and drift waves (plasmas):
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(V2 - F)‘?f + 5
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Nonlinear optics — Magneto-hydrodynamics — etc.

@ We focus on the Charney-Hasegawa-Mima (CHM) equation, a PDE
governing Rossby waves (atmosphere) and drift waves (plasmas):

87¢+87¢8V21/1_87¢8V21/1_0
Ox  Ox Oy dy Ox

@ In the plasma case 1)(x, t)(€ R) is the electrostatic potential

e F~1/2 is the ion Larmor radius at the electron temperature

e [ is a constant proportional to the mean plasma density gradient

@ Periodic boundary conditions: x € [0, 27)?

*V.S. L'Vov and S. Nazarenko, Discrete and mesoscopic regimes of finite-size wave
turbulence, Phys. Rev. E 82 (2010), 056322-1
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CHM equation: Fourier representation
0 (X, t) = D ez Axlt)e*™

M D Bustamante (UCD)
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Wavevector: k = (ky, k)



CHM equation: Fourier representation

0 (X, t) = D ez Axlt)e*™ Wavevector: k = (ky, k)
o Components Ay(t), k € Z?2 satisfy the evolution equation

ActiwcAe = 5 > ZE sk, Stk Ay Ary (1)
k1,ko €72

o wk = 7= (linear frequencies)

= WHF +
“lkol? . . -

° Zk1k2 (kixkoy — klykgx)% (interaction coefficients)

@ J is the Kronecker symbol
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CHM equation: Fourier representation

0 (X, t) = D ez Axlt)e*™ Wavevector: k = (ky, k)
o Components A(t), k € Z? satisfy the evolution equation

ActioAc = 5 D ZE ke, Stk A A, (1)
ky,ko €72

Wk (linear frequencies)

|k|2+F

kol . . .
Z‘i‘lb (kixkay — klykzx)% (interaction coefficients)

0 is the Kronecker symbol

Reality of 1y = A_x = A (complex conjugate)

The modes A interact in triads
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CHM equation: Fourier representation

0 (X, t) = D ez Axlt)e*™ Wavevector: k = (ky, k)
o Components A(t), k € Z? satisfy the evolution equation

ActioAc = 5 D ZE ke, Stk A A, (1)
ky,ko €72

Wk (linear frequencies)

|k|2+F

kol . . .
Z‘i‘lb (kixkay — klyk2x)‘kh|(|2% (interaction coefficients)

0 is the Kronecker symbol

Reality of 1y = A_x = A (complex conjugate)

The modes A interact in triads

A triad is a group of any three spectral modes Ay, (t), Ak, (t), Ak, (t)
whose wavevectors satisfy ki + ko = k3

T . . ks _
@ Triad's linear frequency mismatch: Wik, = Wy + Wi, — Wy
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A Key Observation

Ak -+ 1wk Ak = 5 Z Z|t(1k2 5k1+k2—k Ak1 Ak2 .
ky,ko €72

Triad interactions: wavevectors satisfy kj + ko = k3

Frequency mismatch: wtfh = Wiy + Wy — Wk
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A Key Observation

Ak -+ 1wk Ak = 5 Z Z|I<(1k2 5k1+k2—k Ak1 Ak2 .
ki1,kp €72

Triad interactions: wavevectors satisfy kj + ko = k3

Frequency mismatch: wtka = Wiy T Wy — W

o Classical wave turbulence theory requires |Ak| infinitesimally small
= triad interactions with non-zero frequency mismatch can be
eliminated via a quasi-identity transformation

o Key Observation:

At finite nonlinearity these interactions cannot be eliminated a priori
because they take part in triad precession resonances

We consider inertial-range dynamics, i.e. no forcing and no dissipation:
enstrophy cascades to small scales respect enstrophy conservation.
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...Now, we change gears ... ’

V. E. Zakharov, just when the students thought they began to understand the
lecture
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Truly Dynamical Degrees of Freedom 1/2

CHM equation, Galerkin-truncated to N wavevectors: “Cluster” Cy:

A +iwg Ay = § Z Zli(lkg 5k1+k2—k Ak1 Ak2 R k € Cpn
k1,ka€Cy
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CHM equation, Galerkin-truncated to N wavevectors: “Cluster” Cy:
. . 1
A +iwg Ay = § Z Zli(lkg 5k1+k2—k Ak1 Ak2 R k € Cpn
ki,k2€CnN

e Amplitude-phase representation: Ayx = /nk exp(i ¢x)
@ n: Wave Spectrum
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e Amplitude-phase representation: Ayx = /nk exp(i ¢x)
@ n: Wave Spectrum

e Exact conservation in time of E = Y (|k|? + F)ni (energy) and
kez?
&= |k[>(|k]> + F)nk (enstrophy)
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Truly Dynamical Degrees of Freedom 1/2

CHM equation, Galerkin-truncated to N wavevectors: “Cluster” Cy:

. ) 1
Ak =+ 1wy Ak = E Z Zli(lkz 5k1+k2—k Ak1 Ak2 s k € CN
ki,k2€CnN
e Amplitude-phase representation: Ayx = /nk exp(i ¢x)
@ n: Wave Spectrum

e Exact conservation in time of E = Y (|k|? + F)ni (energy) and
kez?
&= |k[>(|k]> + F)nk (enstrophy)
keZ?
@ The truly dynamical degrees of freedom are any N — 2 linearly
independent triad phases wtikz = ¢k, + Pk, — Pk; and the N wave
spectrum variables ny

@ These 2N — 2 degrees of freedom form a closed system

@ Individual phases ¢k are “slave”: obtained by quadrature
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Truly Dynamical Degrees of Freedom 2/2

Closed system for the 2N — 2 truly dynamical variables:

. k 1 k
Mo = > Z Otk (M My M) 2 COS G,
ki,ka
ke ks ks
- k3 . k3 1 koks kski kika2
= sin N, Mg, Nk, ) 2 + —
ek, Pre s (M3 My Ny ) . e, e,

k
wk1k2 + NNTTkik2

where the second equation applies to any triad (ki + k2 = k3).
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Truly Dynamical Degrees of Freedom 2/2

Closed system for the 2N — 2 truly dynamical variables:

. k 1 k
M = Z 21k Ok k1 —ko (M My Micy) 2 €OS P, (2)
k1,ka
kq k> k3
. k3 — Sin k3 (n M. n )% Zk2k3 Zk3k1 _ Zk1k2
gpklkz ¢k1k2 k3 k1 ko nkl nk2 nk3
wk1k2 + NNTTk1k2 (3)

where the second equation applies to any triad (ki + k2 = k3).

° NNTT::?kZ: “nearest-neighbouring-triad terms"”; these are nonlinear
terms similar to the first line in Eq. (3)
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Truly Dynamical Degrees of Freedom 2/2

Closed system for the 2N — 2 truly dynamical variables:

. k 1 k
Mo =Y 2 kOt —ka (M My Miy)? €O O, (2)
ki,k2
k1 ko k3
.k3 _ Sin k3 (n e n )% Zk2k3 Zk3k1 _ Zk1k2
gpklkz Spklkz k3 k1 ko nkl nk2 nk3
k3
wklkz + NNTTk1k2 (3)

where the second equation applies to any triad (ki + k2 = k3).

° NNTTtikZ: “nearest-neighbouring-triad terms"”; these are nonlinear
terms similar to the first line in Eq. (3)

@ Any dynamical process in the original system results from the
dynamics of equations (2)—(3)
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Precession Resonance 1/3

n =

K3
Pkiko

k 1 k
E Zk1k25k—k1—k2(nk N, Nk,)2 COS Pkiko

ki,ko . . .
1 Z 2 7 3
kok3 4 k3ky kiko

ks 1
sing, k2(nk3 Nk, Nk, )2 e e e

W, + NNTTE, .

Triad phases wtib versus spectrum variables ny:
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Precession Resonance 1/3

. o k 1 |3
M= Y 28Ok k ko (M Mg Miky)? cos gk,
ki,ko . . .
1 Z 2 7 3
- k3 _ oin k3 L | Zrokg k3ky kiko
Pk, — SINPy, k2(”k3 M, Nk, ) 2 ey + Mg | Mg
wk ks + NNTTklk

Triad phases gptib versus spectrum variables ny:
@ Wave spectra ny contribute directly to the energy of the system

° wt-”k have a contribution that is more subtle
1K2
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Precession Resonance 1/3

. o k 1 |3
Nk = E Zk1k25k7k1*k2(nk Nk, nkz) 2 Cos (Pk1k2 )
ki,ko
k1 ko ks
Z Z
- k3 _ : k3 L koks ksky _ Tkikp
Pk, = Sin gpklk2(nk3 Nk, Nk, )2 ey + ey g
k3 ks
Wi ks + NNTTk1k2 .

Triad phases gotikQ versus spectrum variables ny:
@ Wave spectra ny contribute directly to the energy of the system

° wt-”k have a contribution that is more subtle
1K2

@ The RHS of gbtikz—equation admits, under plausible hypotheses, a

— 1t
zero-mode (in time): Qtib = tllm t/ gptjkz(t/)dt/
—00
0

@ This is by definition the precession frequency of the triad phase
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Precession Resonance 1/3

. o k 1 |3
Nk = E Zk1k25k7k1*k2 (nk Nk, nkz) 2 Cos (Pk1k2 )
kyke k k k
1 Z 2 7 3
- k3 _ : k3 L koks ksky _ Tkikp
Pk, = SINO (Mg My My )2 ey T g
wk ks + NNTT

Triad phases gotikQ versus spectrum variables ny:
@ Wave spectra ny contribute directly to the energy of the system

° wt-”k have a contribution that is more subtle
1K2

The RHS of gbtsz—equation admits, under plausible hypotheses, a

1 t
zero-mode (in time): Qtlb = lim / gb::ij(t/)dt’

t—oo t 0

This is by definition the precession frequency of the triad phase

Typically it does not perturb the energy dynamics, except when . ..
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Precession Resonance 2/3

. k 1 k
ng = E Zk1k26k—k1—k2(nk Nk, nk2)2 Ccos SDklk2 s
k1k2
k1 ko k3
Z Z
- k3 — ein (K3 1| fxoks kski _ Tkiko
Pk, — SN ‘Pk ka (s My ”kz)2 My + My Mieg

.when the triad precession frequency (lekz

(cpklk ) ) matches one of

the typical nonlinear frequencies of the triad variables, then:
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Precession Resonance 2/3

. o k L k
ng = E Zklkzék—kl—k2(nk Nk, nk2)2 Ccos (pklkz s
ka ke k K K
1 7 2 7 3
- k3 _ oin ks L Sioks kaky _ Tkikg
Prik, = SN ‘Pk ko (ks My ”k2)2 ng T g My

. . k3 _ .k3
.when the triad precession frequency (Qk1k2 = (cpklk2)) matches one of
the typical nonlinear frequencies of the triad variables, then:

@ The RHS of nk—equation will develop a zero-mode (in time)
— sustained growth of energy in ny, for some wavevector(s) k

@ We call this a triad precession/nonlinear frequency resonance
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Precession Resonance 2/3

. o k L k
ng = E Zklkzék—kl—k2(nk Nk, nk2)2 Ccos (pklkz s
ka ke k K K
1 7 2 7 3
- k3 _ oin ks L Sioks kaky _ Tkikg
Prik, = SN ‘Pk ko (ks My ”k2)2 ng T g My

.when the triad precession frequency (Qk1k2 (cpklk )) matches one of
the typical nonlinear frequencies of the triad variables, then:

@ The RHS of nk—equation will develop a zero-mode (in time)
— sustained growth of energy in ny, for some wavevector(s) k

@ We call this a triad precession/nonlinear frequency resonance

When several triads are involved in precession resonance:
Strong fluxes of enstrophy through the network of interconnected triads,
coherent collective oscillations, and cascades towards small scales.
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Precession Resonance 3/3

. o k 1 [3
M= Y 28Ok —ko (M Mg Mky)? cos ok,
ki,k2
k1 ko Z3
- k3 o . k3 1 Zk2k3 ksk; _ Tkiko
gDkl ko = sin SOkl ko (nk3 nkl nk2) 2 nkl + nk2 "k3
— W, + NNTTE

@ Resonance is accessible via initial-condition manipulation
@ Simple overall re-scaling of initial spectrum: ny — « ny for all k

@ Linear frequency mismatch wtib must be nonzero for some triad
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Precession Resonance 3/3

. o k 1 [3
M= Y 28Ok —ko (M Mg Mky)? cos ok,
ki,k2
k1 ko Z3
- k3 o . k3 1 koks ksk; _ Tkiko
gpkl ko = sin SOkl ko (nk3 nkl nk2) 2 nkl + nk2 "k3
— W, + NNTTE

@ Resonance is accessible via initial-condition manipulation
@ Simple overall re-scaling of initial spectrum: ny — « ny for all k

@ Linear frequency mismatch wtib must be nonzero for some triad

Dimensional analysis explanation:
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Precession Resonance 3/3

. o k 1 [3
e = > ZE Otk (M Mg M) cos gl
ki,ka

k k k

zZ1 zZ2 z3
- k3 _ . k3 L koks ksky _ Tkiko
Pk, = Sin (pklk2(nk3 Nk, Nk, )2 ey + ey e,

— wk ks + NNTT

@ Resonance is accessible via initial-condition manipulation
@ Simple overall re-scaling of initial spectrum: n, — a ny for all k

@ Linear frequency mismatch wtib must be nonzero for some triad

Dimensional analysis explanation:

. , 1
o i o (nk)3? = nonlinear frequency: I o< a2
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e = > ZE Otk (M Mg M) cos gl
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zZ1 zZ2 z3
- k3 _ . k3 L koks ksky _ Tkiko
Pk, = Sin (pklk2(nk3 Nk, Nk, )2 ey + ey e,

— wk ks + NNTT

@ Resonance is accessible via initial-condition manipulation
@ Simple overall re-scaling of initial spectrum: n, — a ny for all k

@ Linear frequency mismatch ‘*"l:sz must be nonzero for some triad

Dimensional analysis explanation:
. 3/2 li f T 1
o N  (nk)** = nonlinear frequency: I x a2

. k3 . . L k3 1 k3
® ¢\ ’y, equation = triad precession: Qk1k2 ~ Ca2 — Wik,
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Precession Resonance 3/3

. o k 1 [3
e = > ZE Otk (M Mg M) cos gl
ki,ka

k k k

zZ1 zZ2 z3
- k3 _ . k3 L koks ksky _ Tkiko
Pk, = Sin (pklk2(nk3 Nk, Nk, )2 ey + ey e,

— wk ks + NNTT

@ Resonance is accessible via initial-condition manipulation
@ Simple overall re-scaling of initial spectrum: n, — a ny for all k

@ Linear frequency mismatch wtikz must be nonzero for some triad

Dimensional analysis explanation:
; 3/2 - _ 1
o N  (nk)** = nonlinear frequency: I x a2
. : . . 1
° gotsz equation = triad precession: Qtjkz ~ Ca2 — wtsz

o Therefore, provided w® #0, Q% =T for some value of o
kika kika
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Triggering the mechanism starting from a single triad 1/3

o 1
Ak + i wk Ax = 5 Z Z 13 Ok +ka—k Aky Ak -
ki1,kp €72

| ks +ki =ks |

1 ket ki =ks |

Full PDE model is difficult to draw (~ 12 million triads in resolution 1282)
Pseudospectral, 2/3-rd dealiased
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Triggering the mechanism starting from a single triad 2/3

@ Parameters

F=1,5=10
@ Single triad:

kl = (1’ _4)5

ko = (1a2)7

k3 = kl =+ k2 = (2, —2)
@ Initial conditions:
‘Pklkz(o) =7/2,
nk, (0) = 5.96 x 10—,
n,(0) = 1.49 x 10 3q,
ne, = 1.29 x 107 3¢,
where « is a re-scaling
parameter
o Initially ny,(0) =0
for all other modes
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Triggering the mechanism starting from a single triad 2/3

@ Parameters How to quantify a strong transfer?
F=1,3=10 Use enstrophy conservation

o Single triad: Define transfer efficiency to mode ny, :
ki = (1,—4), .t
ka = (1,2), Eff, = max aé, )
ks = ki + k2 =(2,-2) e

@ Initial conditions: Example: below, Effy ~ 20%
(pklk2(0) - 71-/2 ‘ T T T T T T T T T
nkl(O) = 5.96 x 10_5a, M‘W‘H T———
nk,(0) = 1.49 x 103, T E‘LWW I
M, = 1.29 x 107 3a, i
where « is a re-scaling os
parameter 0|

o Inltla”y nka(O) = 0 00 2 4 6 8 10 |I2 14 16 18 20
for all other modes e
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Triggering the mechanism starting from a single triad 3/3

Family of models: Deform the original equations using two positive
numbers €1, €2 € [0, 1] which multiply the interaction coeffs. le(‘:kb

Z3, not deformed

kK,
k1+k2=k3 N
Q

ks

M D Bustamante (UCD) SCT-2014, Chernogolovka, Russia August 4th 2014 18 / 27



Triggering the mechanism starting from a single triad 3/3

Family of models: Deform the original equations using two positive

numbers €1, €2 € [0, 1] which multiply the interaction coeffs.

Z3, not deformed

M D Bustamante (UCD)

€2

SCT-2014, Chernogolovka, Russia

ke
kakb

~
_Full PDE model
<

2-paramet
family of mode

(1,0)
Two-triad model

= (0,0)
Isolated triad
model
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Results for two-triad case (¢; # 0, ¢, =0) 1/3

@ Two connected triads: ki + ko = k3 and ky + k3 = kg,
with ks = (3,0) and w::;‘k3 = —g (freq. mismatch)
o dof =6
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Results for two-triad case (¢; # 0, ¢, =0) 1/3

@ Two connected triads: ki + ko = k3 and ky + k3 = kg,
with ks = (3,0) and w::;‘k3 = —g (freq. mismatch)
o dof =6

e Energy & enstrophy invariants: dof = 4 (not necessarily integrable)
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Results for two-triad case (¢; # 0, ¢, =0) 1/3

@ Two connected triads: ki + ko = k3 and ky + k3 = kg,
with ks = (3,0) and w::;‘k3 = —28 (freq. mismatch)
o dof =6
e Energy & enstrophy invariants: dof = 4 (not necessarily integrable)

@ Analytical solution in the limit e — 0 leads to resonant condition:

Q¢ =pl, peZ.
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Results for two-triad case (¢; # 0, ¢, =0) 1/3

@ Two connected triads: ki + ko = k3 and ky + k3 = kg,
with ks = (3,0) and w::;‘k3 = —g (freq. mismatch)
o dof =6
e Energy & enstrophy invariants: dof = 4 (not necessarily integrable)

@ Analytical solution in the limit e — 0 leads to resonant condition:

Q¢ =pl, peZ.

—0.202a%/? + g = p x 0.273a1/2.
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Results for two-triad case (¢; # 0, ¢, =0) 1/3

@ Two connected triads: ki + ko = k3 and ky + k3 = kg,
with ks = (3,0) and w::;‘k3 = —% (freq. mismatch)
o dof =6
@ Energy & enstrophy invariants: dof = 4 (not necessarily integrable)

@ Analytical solution in the limit e — 0 leads to resonant condition:

Q¢ =pl, peZ.

—0.202a%/? + g = p x 0.273a1/2.
Therefore, initial conditions satisfying

10.6272
Ap =
P (0.740382 + p)?’

p=0,1,...
should show strong transfers towards n,.
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Results for two-triad case (e; # 0, e =0) 2/3
@ Integrate numerically evolution equations,
from time t =0to t = 2000/\/5.
o Timescale of strong transfer: t ~ 20/\/3
@ Plots of Triad Precession and Efficiency versus « :
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Results for two-triad case (¢; # 0, ¢, =0) 3/3

Why the peaks of efficiency? Unstable manifolds! (e.g., periodic orbits)

Es(n)
E
08
"\
40
06 L
U \
’ \
! \
i
04 ! Y
R \
. \
at? ' -
A
02 =
Ar
0 200 400 600 800
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Results for two-triad case (¢; # 0, ¢, =0) 3/3

Why the peaks of efficiency? Unstable manifolds! (e.g., periodic orbits)

Es(n)
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Results for family-model case (1 # 0, e #0) 1/2

Role of invariant manifolds is very important:

"
< Full PDE model
. . 1 <
@ They are persistent in
parameter space (€1, €2)
@ We can “trace” the invariant
i 2-parametel
manifolds along the parameter family of mottl
space (1,0)
Two-triad model
@ New precession resonances
- - A" 2
involving new modes o

= (0,0
Isolated triad
model
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Results for family-model case (1 # 0, e #0) 2/2

Triad initial condition.
Pseudospectral method, 1282 resolution (3500 modes) == look at “bins”

“Tracing” method until e = e, = 0.1
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Results for Full-PDE case (¢; = e, =1) 1/2

We consider a more general large-scale initial condition:
ne = 0.0321 x a|k| 2 exp (—|k|/5) for |k| < 8 and zero otherwise,
where « is the re-scaling parameter

@ Total enstrophy: £ = 0.156«
@ Initial phases ¢k are chosen randomly and uniformly between 0 and 27

@ Direct numerical simulations: pseudospectral method with resolution
1282 from t = 0 to t = 800/+/E

@ To study cascades, partition the k-space in shell bins defined as
follows: Biny : 0 < |k| < 8, and Bin; : 21 < |k| <272 j=123 ...
@ Nonlinear interactions lead to successive transfers
Bin1 — Bin2 — Bin3 — Bin4
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o Efficiencies of enstrophy
transfers from Bin; to
Bins and Bing have
broad peaks

These correspond to
collective
synchronisation of
precession resonances

Strong synchronisation is
signalled by minima of
the dimensionless
precession standard
deviation

o = /2 — (2 VE
averaged over the whole
set of triad precessions
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Results for Full-PDE case (¢; = e, =1) 2/2

o Efficiencies of enstrophy
transfers from Bin; to
Bins and Bing have
broad peaks

Precession p.d.f.

0.001

@ These correspond to
collective
synchronisation of
precession resonances

0.0001

1e-05

@ Strong synchronisation is
signalled by minima of
the dimensionless
precession standard
deviation
o = /2 — (2 VE
averaged over the whole
set of triad precessions
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Enstrophy fluxes, equipartition and resolution study

(Full-PDE case)

o Time averages (T = 800/v/€)
of dimensionless enstrophy
spectra & /E, compensated for
enstrophy equipartition

@ In all cases the system reaches
small-scale equipartition
(Biny—Bing) quite soon:

Teq ~ 80/VE

0.001 +

0.0001 |

2

g
o
=28
2a 85

(k]

@ The flux of enstrophy from large scales (Bin;) to small scales (Bina)
is 50% greater in the resonant case (o = 625) than in the limit of

very large amplitudes (o = 106)

o At double the resolution (2562), the enstrophy cascade goes further
to Bins and all above analyses are verified, with Bing replaced by Bing
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Conclusions and Extensions

@ There is vast literature on precession-like resonances in galactic
dynamics, notably Pluto precession-orbit resonance and orbital 2 : 5
Saturn-Jupiter resonance &

e Critical balance turbulence principle ? is effectively satisfied at the
precession resonance, where we fine-tune a nonlinear frequency with
the linear frequency mismatch wtfb

@ Future work: precession resonance mechanism in water gravity
waves, magneto-hydrodynamics

@ Quartet and higher-order systems (Kelvin waves in superfluids,
nonlinear optics)

@ Including forcing and dissipation

8TA Michtchenko and S Ferraz-Mello, Modeling the 5: 2 mean-motion resonance in
the jupiter-saturn planetary system, lcarus 149 (2001), no. 2, 357-374

9P. Goldreich and S. Sridhar, Toward a theory of interstellar turbulence. ii: Strong
Alfvénic turbulence, Astrophys. J., Part 1 438 (1995), 763-775
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@ There is vast literature on precession-like resonances in galactic
dynamics, notably Pluto precession-orbit resonance and orbital 2 : 5
Saturn-Jupiter resonance &

e Critical balance turbulence principle ? is effectively satisfied at the
precession resonance, where we fine-tune a nonlinear frequency with
the linear frequency mismatch wtfb

@ Future work: precession resonance mechanism in water gravity
waves, magneto-hydrodynamics

@ Quartet and higher-order systems (Kelvin waves in superfluids,
nonlinear optics)

@ Including forcing and dissipation

THANK YOU!

8TA Michtchenko and S Ferraz-Mello, Modeling the 5: 2 mean-motion resonance in
the jupiter-saturn planetary system, lcarus 149 (2001), no. 2, 357-374
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