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e The Majda-McLaughlin-Tabak model
e Instability of wave turbulence

e Energy transfer by radiating pulses



Majda-McLaughlin-Tabak (MMT) model

for weakly nonlinear waves

(iZ —L)w(x,t) = M(x, t)|o(x, )2

e complex wave amplitude ¥(x, t)
e linear operator L exp(ikx) = wy exp(ikx),

e dispersion wy = /| k.

(Fourier modes a; = [*/ /21/1 x, t) exp(—ikx)dx/v/2m
Large system size L with periodic boundary conditions)

A.J. Majda, D.W. McLaughlin, E.G. Tabak, J. Nonlinear Sci. 6, 9 (1997),



Conserved quantities of the MMT equation

e Hamiltonian or 'energy’

L
E = Sewa®+(0/2) [57, [/ dx
= E+E

e waveaction
N = Zk|3k|2

e momentum
P = > k|ak|2



Possible resonance of the modes at k and k £+ g
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a) w = k? (nonlinear Schrédinger equation)
b) w = \/|k| for k> g (MMT)

c) w = \/[k| for k ~ g (MMT)

d) radiating quasisolitons for MMT

~ A~~~



Instability by short modulations for A =1
e Monochromatic wave ¢ = (A + da) exp(ikx)

e Modulation da = da exp(igx) + da_ exp(—igx)
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o Shaded areas: Instabilities at g ~ vk and at g ~ 5k/4
e No collapses, E» >0, E4 >0



Instability by short modulations for A = —1

e Monochromatic wave ¢ = (A + da) exp(ikx)
e Modulation da = da exp(igx) + da_ exp(—igx)
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Shaded area: Instability at ¢ ~ 5k /4
Collapses are observed, E; >0, E; <0



Damped and driven MMT equation

Driving force

at moderate wavenumbers 10p}damPing

Damping at high

and at low wavenumbers 10
Nk = <|ak|2>

! 0.01 0.1 1 k
A = —1: Kolmogorov-Zakharov spectrum N ~ k=1

— wave turbulence

A =1: Steeper spectrum Ny ~ k=125

— unknown mechanism of turbulence



Contour plot of regions with high amplitudes:
Switching the sign A = —1 fromto A =1
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Wave turbulence - Coherent structures



Envelope equation for wave turbulence

Ensemble average (u(x, t)u*(x +r,t)) depends on x

Slow spatial variations of the waveaction

N(k,x,t) = /(u(x, t)u*(x +r,t)) exp(ik - r)dr

Kinetic equation is extended by a Vlasov term
ON 00N 0L ON

ot Tokox  ox ok = M

Nonlinear by the renormalized frequency

ok, x, t) = w +2/\/N(p,x, £)dp



Breaking of the spatial homogeneity symmetry

of wave turbulence

e Linearization N(k,x, t) = No(k) + AN(k,x, t)
o Kolmogorov-Zakharov spectrum Ny (k)
e Modulation AN(k,x, t) = a(k)exp(iK - x — iQt)

Stability:
o \=1:
- unstable in one dimension ~ negative Landau damping
- no instability in two dimensions
o \=-1:
- no instability



Growth of correlations for A = 1; decay for A = —1
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e time evolution of the correlation
|k, K, )2 = [(Ak(t) Ar (8121 (A(0) A (0)) 2 with
K = 67/2048 for an ensemble of 400,000 trajectories

e initial conditions contain a small correlation on top of a KZ
spectrum



Formation of coherent structures for A = 1:

A gas of solitary waves

N

Pattern of solitary waves ('pulses’) with high positive
or negative momenta



Quasisolitons for g < ki,

e slow modulation by the envelope ¢(x,t)

Y(x,t) = d(x, t) exp(ikmx — iwmt)

e soliton solution

¢ (x, t) = qy/—wh exp(iwmq®t/2)sech(q(x — wy,t))




Narrow pulse with g ~ ki,

e Shape of a pulse

W) = g\ /amkn 2 F(0) exp(icr) exp(i2t)

Ox=q, 0t = —qv,
Qx = Km, oy = kmVv



Pulses emerge from the instability at g ~ kn,
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e The pulse-speed decays
e The pulse emits radiation



e The pulse narrows in

A radiating pulse
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real space - g increases

e The number of loops increases - k,, increases



Time-average of an evolving pulse is MMT-like

0.1 Ikl 1

e Pulse in k-space at three different times

e Time-average spectrum <\aff)|2> ~ k=129



Radiation: Resonant driving of linear waves

(a) (b)
0.2 la |2 pulse
pulse sof *
Imy radiation radiation
_8.2§ N4 'j
Rew 0.5
o .
0.2 /L %515 0 k 015
linear wave: driving force by the pulse:
iag —wrar = | Ti|exp(—ilgt)
with

Tie = o 25, P15 |y (011) |2 exp(—ikox) i



Doppler-shifted phase frequency Ny = Q + kv

|k |1/2 //

Resonance Ay, = wg..
at kres ~ _(\/§ - ]-)2km



Evolution of energy and momentum

A pulse is an extremum of energy
for a given momentum and waveaction
Balance of energy and momentum of the pulse and the
radiation yields
dE(f)(/\/(f)jp(f)(/\/(f))) 2 dp(f)(/\/(f))
( dN () ) G
Approximation E(f) ~ /N(F) p(F)

N) decays in time
E(F) NV

p(f) ~ N(f)f increases

width of pulse
g~ k(3ﬁ—5)/(2ﬁ—2)

(km: maximum pulse-amplitude) 0.1

-1
decays

0.5




e Radiation driven by a pulse:
13y — Wya, = ‘Tk‘ exp(—/'/\t)

e Time-dependent pulse frequency with linear chirp
approximation Ag(t) = wi + Axt
e Amplitude of radiation

|ak|2 ~ TE\/ |km|/i‘m

after the driving frequency A, (t) has moved
through resonance



The spectrum of the pulses

Driving force Ty ~ q2k,,_79/4

Speed of a pulse in k-space: Ky ~ q3l<,,773/2
Wave action of a pulse N(f) ~ qk,;3/2

Spectrum:

(22,2 ~ N/
~ q_2
~ kBV2-5)/2-V2) k129

~



Analytic solution of the MMT spectrum

e Solve coupled equations for pulse and radiation

e Time-average of the pulse yields the spectrum

(13 P time ~ k22 e g1




Conclusions

e Spatial homogeneity of wave turbulence spontaneously broken

e Transfer of energy by radiating pulses
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