# An instability of wave turbulence causing the formation of pulses

Benno Rumpf, Mathematics Departments, Southern Methodist University, Dallas, USA

Alan C. Newell, Vladimir E. Zakharov, Mathematics Department, University of Arizona, USA

- The Majda-McLaughlin-Tabak model
- Instability of wave turbulence
- Energy transfer by radiating pulses

# Majda-McLaughlin-Tabak (MMT) model for weakly nonlinear waves

$$(i\frac{\partial}{\partial t} - \mathcal{L})\psi(x,t) = \lambda \psi(x,t)|\psi(x,t)|^2$$

- complex wave amplitude  $\psi(x,t)$
- linear operator  $\mathcal{L} \exp(ikx) = \omega_k \exp(ikx)$ ,
- dispersion  $\omega_k = \sqrt{|k|}$ .

(Fourier modes  $a_k = \int_{-L/2}^{L/2} \psi(x, t) \exp(-ikx) dx / \sqrt{2\pi}$ Large system size L with periodic boundary conditions)

A.J. Majda, D.W. McLaughlin, E.G. Tabak, J. Nonlinear Sci. 6, 9 (1997),

## Conserved quantities of the MMT equation

• Hamiltonian or 'energy'

$$E = \sum_{k} \frac{\omega_{k} |a_{k}|^{2} + (\lambda/2) \int_{-L/2}^{L/2} |\psi|^{4} dx}{E_{2} + E_{4}}$$

waveaction

$$N = \sum_{k} |\mathbf{a}_{k}|^{2}$$

momentum

$$P = \sum_{k} \frac{k|a_k|^2}{|a_k|^2}$$

## Possible resonance of the modes at k and $k \pm q$



- (a)  $\omega = k^2$  (nonlinear Schrödinger equation)
- (b)  $\omega = \sqrt{|k|}$  for  $k \gg q$  (MMT)
- (c)  $\omega = \sqrt{|k|}$  for  $k \sim q$  (MMT)
- (d) radiating quasisolitons for MMT



# Instability by short modulations for $\lambda = 1$

- Monochromatic wave  $\psi = (A + \delta a) \exp(ikx)$
- Modulation  $\delta a = \delta a_+ \exp(iqx) + \delta a_- \exp(-iqx)$



- $\tilde{k} = k/A^4$ modulation
- $\tilde{q} = q/A^4$
- Shaded areas: Instabilities at  $q \sim \sqrt{k}$  and at  $q \approx 5k/4$
- No collapses,  $E_2 > 0$ ,  $E_4 > 0$



# Instability by short modulations for $\lambda=-1$

- Monochromatic wave  $\psi = (A + \delta a) \exp(ikx)$
- Modulation  $\delta a = \delta a_+ \exp(iqx) + \delta a_- \exp(-iqx)$



• modulation  $\tilde{q} = q/A^4$ 

• carrier wave  $\tilde{k} = k/A^4$ ,

- Shaded area: Instability at  $q \approx 5k/4$
- Collapses are observed,  $E_2 > 0$ ,  $E_4 < 0$



# Damped and driven MMT equation

- Driving force at moderate wavenumbers
- Damping at high and at low wavenumbers
- $N_k = \langle |a_k|^2 \rangle$



- $\lambda = -1$ : Kolmogorov-Zakharov spectrum  $N_k \sim k^{-1}$  $\rightarrow$  wave turbulence
- $\lambda = 1$ : Steeper spectrum  $N_k \sim k^{-1.25}$ 
  - → unknown mechanism of turbulence

# Contour plot of regions with high amplitudes:

Switching the sign  $\lambda = -1$  from to  $\lambda = 1$ 





#### Envelope equation for wave turbulence

- Ensemble average  $\langle u(\mathbf{x},t)u^*(\mathbf{x}+\mathbf{r},t)\rangle$  depends on  $\mathbf{x}$
- Slow spatial variations of the waveaction

$$N(\mathbf{k}, \mathbf{x}, t) = \int \langle u(\mathbf{x}, t)u^*(\mathbf{x} + \mathbf{r}, t) \rangle \exp(i\mathbf{k} \cdot \mathbf{r}) d\mathbf{r}$$

Kinetic equation is extended by a Vlasov term

$$\frac{\partial N}{\partial t} + \frac{\partial \tilde{\omega}}{\partial \mathbf{k}} \frac{\partial N}{\partial \mathbf{x}} - \frac{\partial \tilde{\omega}}{\partial \mathbf{x}} \frac{\partial N}{\partial \mathbf{k}} = T_4[N]$$

Nonlinear by the renormalized frequency

$$\tilde{\omega}(k, \mathbf{x}, t) = \omega_k + 2\lambda \int N(\mathbf{p}, \mathbf{x}, t) d\mathbf{p}$$

# Breaking of the spatial homogeneity symmetry of wave turbulence

- Linearization  $N(\mathbf{k}, \mathbf{x}, t) = N_0(k) + \Delta N(\mathbf{k}, \mathbf{x}, t)$
- Kolmogorov-Zakharov spectrum  $N_0(k)$
- Modulation  $\Delta N(\mathbf{k}, \mathbf{x}, t) = a(\mathbf{k}) \exp(i\mathbf{K} \cdot \mathbf{x} i\Omega t)$

# Stability:

- $\lambda = 1$ :
  - unstable in one dimension  $\sim$  negative Landau damping
  - no instability in two dimensions
- $\lambda = -1$ :
  - no instability

## Growth of correlations for $\lambda = 1$ ; decay for $\lambda = -1$



- time evolution of the correlation  $|C(k,K,t)|^2 = |\langle A_k(t)A_{k+K}^*(t)\rangle|^2/|\langle A_k(0)A_{k+K}^*(0)\rangle|^2 \text{ with } K = 6\pi/2048 \text{ for an ensemble of } 400,000 \text{ trajectories}$
- initial conditions contain a small correlation on top of a KZ spectrum

#### Formation of coherent structures for $\lambda = 1$ :

## A gas of solitary waves



Pattern of solitary waves ('pulses') with high positive or negative momenta

# Quasisolitons for $q \ll k_m$

• slow modulation by the envelope  $\phi(x,t)$ 

$$\psi(x,t) = \phi(x,t) \exp(ik_m x - i\omega_m t)$$

soliton solution

$$\phi^{sol}(x,t) = q\sqrt{-\omega_m''}\exp(i\omega_m''q^2t/2)\mathrm{sech}(q(x-\omega_m't))$$



# Narrow pulse with $q \sim k_m$



# • Shape of a pulse

$$\psi^{(f)} = \frac{\mathbf{q}}{\sqrt{\omega_m}} k_m^{-1} f(\theta) \exp(i\alpha) \exp(i\Omega t)$$

$$\theta_{x} = \mathbf{q}, \ \theta_{t} = -\mathbf{q}\mathbf{v},$$
 $\alpha_{x} = k_{m}, \ \alpha_{t} = k_{m}\mathbf{v}$ 

# Pulses emerge from the instability at $q \sim k_m$



- The pulse-speed decays
- The pulse emits radiation

# A radiating pulse evolves in time





- ullet The pulse narrows in real space q increases
- The number of loops increases  $k_m$  increases

#### Time-average of an evolving pulse is MMT-like



- Pulse in k-space at three different times
- Time-average spectrum  $\langle |a_k^{(f)}|^2 \rangle \sim k^{-1.29}$

#### Radiation: Resonant driving of linear waves



linear wave: driving force by the pulse:

$$i\dot{a}_k - \omega_k a_k = |T_k| \exp(-i\Lambda_k t)$$

with

$$T_k = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi^{(pulse)} |\psi^{(pulse)}|^2 \exp(-ikx) dx$$

# Doppler-shifted phase frequency $\Lambda_k = \Omega + kv$



Resonance  $\Lambda_{k_{res}} = \omega_{k_{res}}$  at  $k_{res} \approx -(\sqrt{2}-1)^2 k_m$ 

# Evolution of energy and momentum

- A pulse is an extremum of energy for a given momentum and waveaction
- Balance of energy and momentum of the pulse and the radiation yields

$$\left(\frac{dE^{(f)}(N^{(f)}, \frac{P^{(f)}(N^{(f)}))}{dN^{(f)}}\right)^{2} = -\frac{dP^{(f)}(N^{(f)})}{dN^{(f)}}$$

- Approximation  $E^{(f)} \approx \sqrt{N^{(f)}P^{(f)}}$
- N<sup>(f)</sup> decays in time
- $E^{(f)} \sim N^{(f)^{\sqrt{2}-1}}$  decays
- $P^{(f)} \sim N^{(f)^{\sqrt{8}-3}}$  increases
- width of pulse  $q \sim k_m^{(3\sqrt{2}-5)/(2\sqrt{2}-2)} \ (k_m: \text{maximum pulse-amplitude})$



• Radiation driven by a pulse:

$$i\dot{a}_k - \omega_k a_k = |T_k| \exp(-i\Lambda t)$$

- Time-dependent pulse frequency with linear chirp approximation  $\Lambda_k(t) \approx \omega_k + \dot{\Lambda}_k t$
- Amplitude of radiation

$$|a_k|^2 \sim T_k^2 \sqrt{|k_m|}/\dot{k}_m$$

after the driving frequency  $\Lambda_k(t)$  has moved through resonance

## The spectrum of the pulses

- Driving force  $T_k \sim q^2 k_m^{-9/4}$
- Speed of a pulse in k-space:  $\dot{k}_m \sim q^3 k_m^{-3/2}$
- Wave action of a pulse  $N^{(f)} \sim q k_m^{-3/2}$
- Spectrum:

$$\langle |a_{k=k_m}^{(f)}|^2 \rangle \sim N^{(f)}/\dot{k}_m$$
  
  $\sim q^{-2}$   
  $\sim \kappa_m^{(3\sqrt{2}-5)/(2-\sqrt{2})} \sim k_m^{-1.29}$ 

# Analytic solution of the MMT spectrum

- Solve coupled equations for pulse and radiation
- Time-average of the pulse yields the spectrum

$$\langle |a_k^{(f)}|^2 \rangle_{time} \sim k^{-2+1/\sqrt{2}} \sim k^{-1.29}$$



## Conclusions

- Spatial homogeneity of wave turbulence spontaneously broken
- Transfer of energy by radiating pulses

```
B.R., A.C. Newell, V.E. Zakharov, PRL 103, 074502 (2009); A.C. Newell, B.R., V.E. Zakharov, PRL 108, 194502 (2012); B.R., A.C. Newell, PLA 377, 1260 (2013)
```