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Rational in spectral parameter A\ linear problems

(Zakharov, Shabat 1978, Zakharov Mikhailov 1978)
Rational in A linear problems = integrable systems of PDEs.
LYW =0, AQ)W(A) =0,  detW())#0,

n

U LUV
L(A) = De—Up—Y S = A(\) = De—Vo-> 5 P Ug, Vy € Maty(C; x, t).

k=1 Ck p=1"" Bp

The condition [L(A\), A(\)] = 0 < the system of N?(n+ m + 1) equations
(assuming a; # B, «i, Bj € C):

(UO) - DX(VO) + [U07 VO] = 07

(Uk)+[Uk,Vo+Z \iﬁ
P

]=0, k=1,...,n,

Dx(vp)—[uo+2 Yk Vol =0, p=1,....m

o1 P — o
on N?(n+ m+2) functions (entries of Uy, V). By a gauge transformation one
can set Up = Vo = 0 and get a well determined system of N?(n+ m) equations.
Eigenvalues of Uk and V, are arbitrary functions of x and t respectively and
thus we arrive to a well determined system of N(N — 1)(n + m) equations.
X In the case N =3,n = m = 4 it is 48 equations.



Algebraic reductions, reduction group and automorphic Lie algebras

More general:
L(X\) =D« — U(N), AN =D:— V()N), UN), V(X)) € A(T) = Ax R(TN)

where A is a simple Lie algebra and R(T') is a ring of meromorphic functions
with poles at the set I and no other singularities.

A reduction group G is a subgroup of Aut.A(I), so that G C Aut A(IN).
Automorphic Lie algebra is A(N)° C A(I).

In the case of rational in A Lax operators a group G is finite, the set I' is a
finite union of orbits of the group G and Aut A(I') C Aut (A x C(X))

If a finite reduction group G is cyclic and I' = {0, 00}, then A(I")° is a graded
(Kac-Moody) algebra.

In general, A(T)€ is a quasi-graded (or almost-graded in terminology proposed
by Krichever and Novikov) Lie algebra.

There is a good progress in classification of automorphic Lie algebras (Bury,
AVM, Lombardo, Sanders).



Tetrahedral reduction group

We consider G ~ T generated by two elements of Aut (sl3(C) x C(\))

gs :a(\) = Qsa(os 1(1)Qs
g :a()) — Qra(o;1(V)Q;

A+2
os(A) =wA ,or(A) = o1
2mi

w 0 0 -1 2 2
0 w? 0 |,Q = 2 -1 2
0 0 1 2 2 -1

where w = €3 . We have g3 = g? = (gsg/)° = id.
There are two smallest orbits 'y = {1,w,w?, 00} and My = {—2, —2w, —2w?, 0}.

Automorphic Lie algebra .A(I'l)G has a quasi-graded structure
A(M)C =P Ak, Ak = {Jray, Jhay, ..., JFag}, [A", AT] C ATTM D AT
k=0

a; =< Aei3 >1, ap =< Aep1 >, a3 =< Ae3zp >T
as = [a1,a3], a5 = [ap,a1], ag = [a3,a2]

a7 = [[a1, a3], a2], ag = [[a2,a1],a3], J= %



Tetrahedral reduction group
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Tetrahedral reduction group

L = Ox + uaj + vap + was, uvw =1,
3 6

A=0:+ Zpiai + ZQIaI-
i=1 i=4

it = Yo+ 92 + 1 (V17 eI e VHT )

[L7 A] =0 & i ) )
—ithe = thex + ”‘bg =i <e¢+¢ + wew¥Hw P 4 w*eW*¢+ww) Wy
B = 9y + pby + gby + rbs, pgr=1
¢x:e‘5—e’;, wx:eiéi’&—e‘z’,
[L7 B] =0 &

by =eb—e¥, P, =e 9V _ b
If we let x =y, ¢ = ¢, 1 =1, then

Psx = e — e,



Elementary Darboux transformations

Darboux transformations M for Lax operators
L = Ox + uay + vay + was, uvw =1
is a mapping of a fundamental solution LW = 0 to a fundamental solution
Vi = M(A)V, L1V =0 where
Ly = O« + ma; + viaz + wias, tmviw, = 1.
Let L =0« + U, L1 = 0x + S(U), W1 = S(WV), then it follows from [0, S] =0

that
Mc(A) + S(UYM(A) — M(A\)U =0

Darboux matrix M(\) inherits symmetries of the Lax operator. There exists

such M(\) that

MO) = QMR MO =@M,



Elementary Darboux transformations

Invariant M with first order poles in A at I' is of the form
M = If + a(uvira; + virvias + asz).

Where f and « can be found from the condition that det M()) is a generating
function of first integrals

det M = EJ(A) + F1 = E(J(A) — ) + F

) = (X +8)°

1 3 25
E=_—auuiw

43 —1)3 16
F= %(3f+a(1+uvu1—2vu1vl))(3f—|—a(1—2uvu1+vu1vl))(3f+a(—2+uvu1+vu1v1))

1
Fo=~E+F = ﬁ(3f—|—a(l—|—uvu1+vu1v1))q, v =J(1+V3)

where q is an irreducible quadratic polynomial in f. By setting E = %,

Fi = c1 € C we obtain a generic Darboux matrix parametrised by a constant cj.



Elementary Darboux transformations

There are four degenerate Darboux matrices (three cases when F; = 0 and one
case when F, = 0)

1
Mi(u,v,u,v1) = a(—g(—2 + uvuy + vunvi)l + uvinas + vupvias + as)

1
Mo(u, v, uz, v2) = 5(—5(1 + uvip — 2vipvo)l + uvibay + vipvoas + as)

1
Ms(u, v, us, v3) = ’y(g(—l + 2uvus — vusvs)l + uvusay + vusvsas + as)
1
Mu(u, v, us, va) = 6(—5(1 + uvug + vuava)l 4 uvusar + vusvaaz + as).

2 2 3 2 2 3 .29 3 2 2
a’uvuivn =1, Buwuyw =1 ~uuivz=1uv uiva=1.



Elementary Darboux transformations

From (M;)x + Si(U)M; — M;U = 0 we get corresponding differential-difference
systems (or Backlund transformations)

1 2 1
( -1 51)(”*) woavtay tu—m—viwn
w | 1 1
Si+1 1 v —w bty —utu
—1 52 UTT %-‘FU—UQ—VQ
S+1 1 L %—ﬁ—m’%—u-i-w-i-v-i-m
( %’—u—v—l—m )
1 1
%+E7U3V37u3
( U—us—Vv-+wvy )
= 1 1
E_u4V4_“+“4

2
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Notice that



Bianchi permutability of Darboux maps and difference systems

From [S,’7 Sj] =0 it follows that Qi,j = S,(MJ)M, — SJ(M,)MJ =0

2

— UV — uuiU14VaVv + uuguiavaVv + uiave = 0
—UuUTVVa + Uuguivg + U1V + UL VVIVI4 — UULVVAVI4 — UVig = 0

—u24u§ v22 vy + uug4u§ VoV + Ul Vo + UU4UI VWO V4 — UlaUpalpVovy — Uugvs = 0

Upvy — uvog — uupy + uug =0

—u3Vv3 + uzuaU34vav3 — uusUgvvy + ugva = 0
—ugva + Uv3g + vagva — v3vzg =0

uu1v2v2 — u2u12v22v — uv — uuiuR Vv + uupuipvov + upve = 0

7uu% VVp — U U1 vv22 + uupurvvo + u1vo + uuivvavip — uvip =0

U U3 U2 Vo + U3UVE — UpU3UVVOVE — LpU3Lp3UVaV3 — Ul Vo + U§UQ3V22V3 =0

uvoz — uavo =0

— = A

uizvy —uv =0
—u1u2vv13 + ufuvvl — uiuvviviz + uuvvaviz 4+ uviz — upva =0

The above differential-difference equations are non-local symmetries of these
difference systems. Indeed,

Qi = —5i(5(V)Qi; + QiU =0.



A discrete analogue of Kupershmidt's KdV6 equation

(D3 + 8ux Dy + i) (Ur + tx + 602) = 0
(Dx £ 2u) (Ut + Upx — 6u2ux) =0
System Q1,4 can be reduced to one scalar 6-point equation
(10,151 — t20)(Q) =0, Q = uiouo,1 (oo +u11)+1
where u;; = S{S)(u). (Similar reduction exist for @4 and @3.4).
This 6-point equation admits the following local symmetry,

1

Ostioo = tpo(S1 — 1
sH00 00(51 )(U1,ouo,ou—1,0 — 1)(wo,0u—1,0u—20 — 1)

and a non-local symmetry
Oxlio,0 = Uo,000,0

_ 1 1
(S1+1+ S ) (o) = (51— 1) (uo,ou—1,o + ., + 7)

—1,0  Uoo

(s = some) = (51— 1) (1 - L),

u—10  Uoo



Potentiations and 6-point scalar equations

Systems (3 and Q1,2 can be brought via potentiation and invertible
transformations to a 6-point scalar equation,

W0,1W1,0W1,2—W1,0W2,2W1,2—W0,1W1,0W2,1—W0,0W0,1W2,2+Wo,0W1,0W2,2+wp,1w2,1w22 = 0

Q1,3 can be brought via potentiation to the equation

Wo,0W1,0W1,2+Wo, 1 W2, 1 W1 2— W1 0W2, 1 W1 2— W0 0 W2 2Wi1 2— W 0Wo,1W2,1+Wo oWz 1W2 2 = 0

Indeed, we introduce w such that upm = “2™ and vy, = ——="—. Here
N ’ . ntl,mil
an,m corresponds to a shifted by n units in the 1 direction and m units in the 3

direction.

These equations seem to be new, they are different from the type of equations
classified by V.Adler.



Local symmetries

Let A be the algebra of functions of the variables u{w for all p,q € Z and
j=1,...,s.

Each function f € A depends on a finite number of the variables u{,,q.
Depending on the problem, one can consider polynomial, rational, analytic or
meromorphic functions.

There are two commuting automorphisms S and 7 of A
SnTmf(Ui,j7 Upky -+ -) = F(Uitnjms Upynkim,---),

and thus A is a difference algebra.

We consider a system of difference equations of arbitrary order

Q' (uhgr th o, U1, 1,...) =0, i=1,...,r, j=1,...s.

In this system we have r equations for s functions u*,. .., u°.
As usual, we assume that equations are valid at every point (n, m) € 7?2, and
thus

i i j j 2 .
Qp,q = Q (u;),qv u;ly+1,q7 u;j,q+13 u:;+1,q+17 A ) = 0? (p) q) 6 Z b = 17 ctty r7



Local symmetries

With this system we associate the ideal Jo = ({Q} ,}) C A and the quotient
algebra A = A/ Jg.

For any a € Jg one has S(a) € Jg and T(a) € Jo. Therefore, S and T
determine well-defined maps from A to A which are automorphisms of A.

Recall that K = (K*,..., K*) is a symmetry of system Q = 0 if Q.(K) =0
modulo Jg. Here K!,...,K® € A and Q. is the Frechét derivative of Q

A vector field

Xe= 3 STUK) (1)

J:l,..4,2,
(p,q)€Z

is a derivation of the algebra A and satisfies SXx = XS, T Xk = Xk T.

Oubg’

s

The equation Q.(K) = 0 modulo Jg implies that Xk (Jg) C Jg. Therefore, Xx
determines a well-defined derivation of the algebra A = A/Jq.



Non-local symmetries

A (local) symmetry K of the system Q =0 is a map Xk: A — A satisfying

SXK = )(KS7 TXK = XKT7 XK(fg) - fXK(g)+gXK(f)7 vag S A

A difference extension of (A,S,T) is given by (A,8,7T), where Ais a
commutative associative algebra and S, 7 are automorphisms of 4 such that

> the algebra A is embedded in A,
> the restrictions of § and T to A C A coincide with S and T respectively,
> one has ST =T38.
Since A C A and Jo C A, one has Jg C A. Let J C A be the ideal generated
by Jo C A. Then one has the natural embedding A=A/Jo — A=A/J.

A nonlocal symmetry of the system Q = 0 in the difference extension
(A, 8, T) of (4,8, T) is a map X: A — A obeying

SX=XS, TX=XT, X(fg)=1rX(g)+egX(f) Vf,gcA

Here we use the fact that for any a € A and b € A the product ab € A is well
defined, because A C A.



Non-local symmetries

Example: Consider the H1 equation
Q = (uo,0 — u1,1)(t1,0 — wo1) —a+ B =0.
The following system is compatible modulo Jg
w~+ wio = (o0 — U1,o)2 + a, w+ wo,1 = (o0 — Uo,l)2 + 5.
We can extend S§,7 to new variable w by

wio = —w + (g0 — Lll,o)2 + a, wo,1 = —w + (o0 — uo,1)2 + 5,

wo10=—w+ (u_10— too)’ +a, Wo,—1 = —w + (uo,—1 — to0)* + B,

It is easy to check that K = w satisfies Q.(K) = 0 in .A modulo J and,
therefore, determines a nonlocal symmetry for H1.



Non-local symmetries

Similar to local symmetries, one can use non-local symmetries to find invariant
solutions.

Let us describe solutions of H1 which are invariant with respect to the nonlocal
symmetry K = w. According to the definition of symmetry-invariant solutions,
we need to solve the system

Q = (uo,0 — u1,1)(t1,0 —wo1) —a+ B =0,
wio = —w + (uo0 — U1,o)2 + a, wo,1 = —w + (o0 — uo,1)2 + 5,
w_10=—w+ (u_10— too) + a, wo,—1 = —w + (to,—1 — to,0)” + 3,
w = 0.

Taking into account w = 0, from this system we get

ui0 = Uoo + vV—a, Uo,1 = o0 + v/ —0,
which implies that u(n, m) = n\/—a + my/—5 + ¢, where ¢ is a constant.



Happy Burthday!



