|
||||
Riemann-Hilbert Problems and Soliton equations. The Reduction problem and Hamiltonian properties.
Date/Time: 10:50 05-Aug-2014
Abstract:
\documentclass[12pt]{article}
\usepackage{mathrsfs} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amssymb} \newcommand{\bbbr}{\mathbb{R}} \newcommand{\bbbh}{\mathbb{H}} \newcommand{\bbbz}{\mathbb{Z}} \newcommand{\bbbc}{\mathbb{C}} \newcommand{\K}{K\"ahler} \newcommand{\A}{\mathscr{A}} \newcommand{\F}{\mathscr{F}} \newcommand{\M}{\mathscr{M}} \newcommand{\N}{\mathscr{N}} \newcommand{\AH}{\mathscr{A\!H}} \newcommand{\AK}{\mathscr{A\!K}} \def\openone{\leavevmode\hbox{\small1\kern-3.3pt\normalsize1}} \newcommand{\trho}{\tilde{\rho}} \newcommand{\bx}{{\bf x}} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \usepackage{color} \def\red{\color{red}} \def\blue{\color{blue}} \def\to{\longrightarrow} \def\mapsto{\longmapsto} \def\p#1{\partial_#1} \def\tri{\ \triangle\ } \def\cwedge{\bigcirc\kern-1.07em\wedge\ } \newtheorem{thm}{Theorem} \newtheorem{exam}{Examples:} \hoffset=-50pt \voffset=-25pt %\textwidth=16.5cm \textheight=22.5cm \textwidth=473pt \textheight=640pt \begin{document} \thispagestyle{empty} \title{Riemann-Hilbert Problems and Soliton equations. The Reduction problem and Hamiltonian properties.} \author{ V. S. Gerdjikov \\ Institute of Nuclear Research and Nuclear Energy\\ Bulgarian Academy of Sciences, Sofia 1784, Bulgaria} \date{} \maketitle Our main tool is the Riemann-Hilbert problem (RHP) with canonical normalization \begin{equation}\label{eq:rhp}\begin{split} \xi^+(\vec{x},t,\lambda) &= \xi^-(\vec{x},t,\lambda) G(\vec{x},t,\lambda) , \qquad \lambda^k\in\mathbb{R}, \qquad \lim_{\lambda\to\infty} \xi^+(\vec{x},t,\lambda) =\openone , \end{split}\end{equation} where the functions $\xi^\pm(\vec{x},t,\lambda)$ are taking values in a simple Lie group $\mathfrak{G}$ and allow analytic extension for $\lambda^k\in\mathbb{R}$ respectively, see \cite{VG1,VG2,VYa}. We also assume that the sewing function $G(\vec{x},t,\lambda) $ depends on the auxiliary variables $\vec{x},t$ as follows: \begin{equation}\label{eq:Gxt}\begin{split} i \frac{\partial G}{ \partial x_s } -\lambda^k [J_s, G(\vec{x},t,\lambda) ] &=0, \qquad i \frac{\partial G}{ \partial t } -\lambda^k [K, G(\vec{x},t,\lambda) ] =0. \end{split}\end{equation} where $J_s$ belong to the Cartan subalgebra of the relevant simple Lie algebra $ \mathfrak{h}\subset \mathfrak{g}$. The canonical normalization of the RHP allows us to use the asymptotic expansions: \begin{equation}\label{eq:xi-as}\begin{split} \xi^\pm(\vec{x},t,\lambda) = \exp Q(\vec{x},t,\lambda), \qquad Q(\vec{x},t,\lambda)=\sum_{k=1}^{\infty} Q_k(\vec{x},t) \lambda^{-k} . \end{split}\end{equation} where all $Q_k(\vec{x},t)\in \mathfrak{g}$. Next we use Zakharov-Shabat theorem \cite{ZaSha} to construct a family of commuting operators $L_s$, $M$ provided the coefficients $Q_j(\vec{x},t)$, $j=1,\dots,k$ in (\ref{eq:xi-as}) satisfy a certain set of soliton equations. New examples of such equations \cite{VG1,VG2} are obtained by applying Mikhailov's $\mathbb{Z}_h$-reduction \cite{Mikh} on $C\xi^\pm(\vec{x},t,\lambda)C^{-1}=\xi^\pm(\vec{x},t,\lambda\omega)$ where $C^h=\openone$ and $\omega^h=1$. One can also derive their soliton solutions using the dressing Zakharov-Shabat method \cite{ZaSha}. It is natural to expect that the Hamiltonian properties of the new types of soliton equations can be obtained from the the generic Hamiltonian structures of polynomial bundles \cite{KuRe} by considering the reduction conditions as Dirac constraints. {\small \begin{thebibliography}{DD} \bibitem{VG1} V. S. Gerdjikov. Pliska Stud.\ Math.\ Bulgar.\ {\bf 21}, 201--216 (2012). %subm. March 20, 2012. {\bf arXiv:1204.2928 }%[nlin.SI]}. \bibitem{VG2} V. S. Gerdjikov. AIP Conf. proc. {\bf 1487} pp. 272-279 (2012); %doi:http://dx.doi.org/10.1063/1.4758968 (8 pages). %Proceedings of AMITANS-4 conference. \quad {\bf arXiv:1302.1116.} \bibitem{VYa} V. S. Gerdjikov, A B Yanovski. Journal of Physics: Conference Series {\bf 482} (2014) 012017. %\quad doi:10.1088/1742-6596/482/1/012017 \bibitem{ZaSha} V. E. Zakharov, A. B. Shabat, \textit{ Functional Annal. \& Appl.} {\bf 8}, 43-53 (1974) (In Russian); \\ V. E. Zakharov, A. B. Shabat, \textit{ Functional Annal. \& Appl.} {\bf 13}, 13-22 (1979) (In Russian). \bibitem{Mikh} A. V. Mikhailov, \textit{Physica D} \textbf{3D}, 73--117 (1981). \bibitem{KuRe} P. P. Kulish, A. G. Reyman. %\textit{Hamiltonian structures of polynomial bundles}. Sci. notes of LOMI seminars, {\bf 123}, 67--76 (1983). (In Russian). \end{thebibliography} } \end{document} Attachments:
Authors
(no additional information) |
||||
© 2012, Landau Institute for Theoretical Physics RAS www.itp.ac.ru
Contact webmaster |